
reportl

www.omniot.com

SOFTHUB CONFIGURATION
Configuring the OmnIoT SoftHub Rule Engine

Rel200515

Table of Contents

1. Introduction .. 1

1.1 SoftHub Platform Components ... 1

1.2 SoftHub Rule Engine Mechanics ... 2

1.3 Configuration File Contents and Deployment .. 4

2. Using the SoftHub Configuration Utility .. 5

2.1 The Toolbar Menu ... 6

2.2 Setting the Target Platform .. 6

2.3 The Configuration Options Panel .. 7

2.4 The Help Panel .. 9

2.5 The Current Object Panel .. 9

2.6 The Object Info Panel .. 10

3. SoftHub System Options .. 11

3.1 Hub Options .. 11

3.2 Ble Settings .. 13

3.3 Email Settings .. 15

3.4 GPIO Settings .. 16

4. SoftHub Rule Engine Objects .. 17

4.1 Sensor Stream Objects .. 17

4.1.01 AntSensorStream Sensor Stream object .. 18

4.1.02 BleSensorStream Sensor Stream object .. 19

4.2 User Report Objects .. 21

4.2.01 UserReport User Report object (Main) .. 21

4.2.02 UserReport User Report object (Sensor Stream Data) .. 22

4.2.03 UserReport User Report object (Sensor Data Average) ... 23

4.2.04 UserReport User Report object (Sensor Data Cache) .. 24

4.2.05 UserReport User Report object (GPIO Pin Values) .. 25

4.3 Event Objects .. 26

4.3.01 AppStarting Event object ... 26

4.3.02 AppStopping Event object.. 27

4.3.03 UserDefinedEvent Event object ... 27

4.3.04 SensorConnect Event object .. 28

4.3.05 SensorDisconnect Event object.. 28

4.3.06 NewSensorPacket Event object ... 29

4.3.07 GpioPinLow Event object ... 29

4.3.08 GpioPinHigh Event object .. 30

4.3.09 TimerExpired Event object ... 30

4.4 Action Objects ... 31

4.4.01 EnableSensorStream Action object .. 31

4.4.02 DisableSensorStream Action object ... 32

4.4.03 EnableBleNotifications Action object .. 32

4.4.04 DisableBleNotifications Action object .. 33

4.4.05 InitiateBleRead Action object .. 34

4.4.06 InitiateBleWrite Action object ... 34

4.4.07 StartOneshotTimer Action object .. 35

4.4.08 StartContinuousTimer Action object ... 36

4.4.09 StartOneShotTodTimer Action object .. 37

4.4.10 StartContinuousTodTimer Action object ... 38

4.4.11 StopTimer Action object .. 39

4.4.12 SendData Action object ... 39

4.4.13 SendReport Action object .. 40

4.4.14 PublishData Action object .. 41

4.4.15 PublishReport Action object .. 42

4.4.16 LogData Action object .. 43

4.4.17 LogReport Action object .. 43

4.4.18 SendEmail Action object .. 44

4.4.19 Initialize Flag Action object .. 45

4.4.20 SetFlag Action object ... 45

4.4.21 ClearFlag Action object .. 46

4.4.22 ToggleFlag Action object .. 47

4.4.23 InitializeCounter Action object .. 47

4.4.24 IncrementCounter Action object ... 48

4.4.25 DecrementCounter Action object .. 49

4.4.26 InitDataAverager Action object ... 50

4.4.27 UpdateDataAverager Action object ... 51

4.4.28 InitSensorDataCache Action object ... 51

4.4.29 UpdateSensorDataCache Action object ... 52

4.4.30 SetGpioPinLow Action object ... 53

4.4.31 SetGpioPinHigh Action object .. 53

4.4.32 ToggleGpioPin Action object .. 54

4.4.33 ExecSysCommand Action object .. 55

4.4.34 EnableHubAction Action object ... 56

4.4.35 EnableHubEvent Action object .. 56

4.4.36 EnableHubRule Action object .. 57

4.4.37 DisableHubAction Action object .. 58

4.4.38 DisableHubEvent Action object ... 58

4.4.39 DisableHubRule Action object ... 59

4.4.40 ToggleHubAction Action object ... 60

4.4.41 ToggleHubEvent Action object ... 61

4.4.42 ToggleHubRule Action object ... 61

4.4.43 SoftHubStop Action object ... 62

4.5 State Objects ... 63

4.5.01 SensorConnected State object ... 63

4.5.02 SensorDataValue State object ... 64

4.5.03 SensorDataAveragerValue State object ... 65

4.5.04 NumCachedSamplesValue State object ... 66

4.5.05 FlagState State object .. 67

4.5.06 CounterValue State object ... 67

4.5.07 GpioPinState State object .. 68

4.5.08 TimeOfDay State object ... 69

4.5.09 DayOfTheWeek State object .. 70

4.5.10 DayOfTheMonth State object .. 71

4.5.11 CurrentMonth State object .. 72

4.5.12 CurrentYear State object.. 73

4.6 Rule Objects .. 74

4.6.01 UserRule Rule object (Main) .. 74

4.6.02 UserRule Rule object (State Check) ... 75

4.6.03 UserRule Rule object (Triggered Actions) .. 76

5. Example Rulesets .. 77

5.1 Simple Data Forwarding .. 78

5.2 Timers and Conditionals ... 83

5.3 Email and SMS Alerts .. 90

5.4 Logging, Flags, and GPIO’s .. 101

5.5 Counters, Averagers, Cache, and Custom Report packets ... 114

Addendum A: MQTT Extended Options Files (.mcfg) ... 128

A.01 Introduction .. 128

A.02 General Connection Settings .. 129

A.03 Last Will Connection Settings ... 129

A.04 SSL/TLS Connection Settings ... 130

A.05 JSON Filter-Format Files.. 130

A.06 External Control Via User Defined Events .. 131

Addendum B: JSON Filter-Format Files (.jff) ... 132

B.01 Introduction .. 132

B.02 Pattern Match Specifiers .. 132

B.03 Data Label Specifiers ... 132

B.04 Output Format Specifier ... 133

Addendum C: SoftHub Object Tables ... 134

C.01 Sensor Stream Object(s) Table .. 134

C.02 User Report Object(s) Table .. 134

C.03 Event Object(s) Table .. 134

C.04 Action Object(s) Table ... 135

C.05 State Object(s) Table ... 137

C.06 User Rule Object(s) Table ... 137

1

1. Introduction

This document provides an in-depth view of the SoftHub Configuration Utility. It will detail how to use

the SoftHub Configuration Utility to create, edit, and deploy the file used to configure the SoftHub

Application. While it will also provide a brief review of the SoftHub Platform itself, it is assumed that the

reader has previously familiarized themselves with the companion document titled Introduction: The

OmnIoT SoftHub Platform.

1.1 SoftHub Platform Components

Currently the OmnIoT SoftHub Platform consists of three primary components:

The SoftHub Application – This code runs on the physical hub device itself. On application startup, it

reads a user created configuration file which the SoftHub’s internal rule engine will continually execute.

Users identify Events they are interested in and Rules to be evaluated as these events occur. Rules in

turn consist of optional conditional State objects to be evaluated and Actions to be carried if the state

logic is fully satisfied.

The SoftHub Configuration Utility – This is a Windows’ PC application the user runs to build the

configuration file that is to be read/executed by the SoftHub Application. In general there are two main

sections in the rule file. The System Options section allows the user to set system-wide settings while the

Rule Engine section allows the user to define the objects and rules to be executed by the rule engine

itself.

The Remote Packet Capture Application – For applications that require data to be forwarded to one or

more central servers, this application runs on the remote packet capturing server(s) which receive and

decode incoming packets from one or more hub devices running the SoftHub Application. Currently the

Remote Packet Capture Application runs as a Windows Service (though a similar Linux daemon is

planned in the future). As packets are received and decoded, an external DLL is called which will be

passed both the raw binary packet data as well as an optional fully decoded JSON or XML version of

each packet. Users provide the external DLL and may then post-process the packets as needed. Both C#

and C++ sample projects are provided for building this DLL.

2

1.2 SoftHub Rule Engine Mechanics

Architecturally, the SoftHub Application exists a set of “loosely coupled” subcomponents tied together

and orchestrated by one central subcomponent, the SoftHub “Rule Engine”. A user defined ruleset will

contain a group of objects which the Rule Engine will instantiate at startup. These objects can be looked

at as individual stand-alone executables. As events are detected the rule engine will process any

associated Rule Objects which in turn may evaluate a list of State Objects, which depending on their

outcome may trigger the execution of one or more Action Objects. Each of these Action Objects may

then interact with any of the SoftHub’s subcomponents to carry out the user specified action.

By way of an example a user may wish to connect to a set of BLE sensors every day at a specific time.

The user would start by creating a “Time of Day Timer” action object. When executed, this object would

register a timer with the SoftHub’s Timer Management subcomponent. At the designated time the

Timer Management subcomponent would generate the associated TimerExpired event which would be

received by the SoftHub’s Rule Engine subcomponent. The Rule Engine would then evaluate any rules

the user had associated with this event. In this example the user would also create a ConnectSensor

action object specifying the desired BLE sensor. That object would in turn send a message to the

SoftHub’s BLE Comms Manager subcomponent requesting that the specified sensor be connected.

In the simple example above we have a few user created action objects (the time of day “timer” object

and the “connect sensor” object) directing a couple of the SoftHub’s subcomponents (the Timer

Management and BLE Comms Manager subcomponents). Lastly, we have the Rule Engine

subcomponent at the heart of everything creating the objects and orchestrating their execution.

As described above, the heart of the OmnIoT SoftHub platform is the SoftHub Rule Engine. Users are

provided a palette of objects which in turn are used to create a ruleset. Rulesets are the part of the

configuration file that ultimately controls all aspects of how the SoftHub Application will behave.

Rulesets can be thought of as the list of things you want the hub device to do, and when and under what

conditions you want those things done. Currently there are six categories of SoftHub objects - Sensor

Stream objects, User Report objects, Event objects, State objects, Action objects, and User Rule objects.

In order to effectively configure the SoftHub’s rule engine it is vital to understand how these objects

relate to each other and these four basic concepts:

(1) Any SoftHub subcomponent may detect or generate an event. When a specific event occurs an

Event Object will be put into the Rule Engine’s event queue by the originating subcomponent.

(2) When the Rule Engine pops an Event Object from its event queue it will then evaluate one or

more Rule Objects that the user has associated with the detected event.

(3) Rules are evaluated in the order in which the user has defined them. The evaluation process

refers to the executing of any optional logical conditional statements the user has defined in

relation to the rule. Logical conditionals are made up of one or more logically connected State

Objects the user may have defined.

(4) If the optional conditional statement resolves to a Boolean “true” then all Action Objects

associated with the rule will be executed (again in the order they are defined by the user).

3

Understanding the above four tenants is critical to effectively configuring the SoftHub’s rule engine. The

statements above touch on four of the six current rule engine object types. Below is a brief description

of each object type -

Event Objects – Event objects may be put into the Rule Engine’s “event queue” by any SoftHub

subcomponent. Users may associate one or more Rule objects to be evaluated when the Rule Engine

receives a specific event type. Every Rule object is triggered by exactly one Event object. In contrast,

most Event objects are reoccurring and may trigger the evaluation multiple Rule objects.

Action Objects – Individual Action objects each describe a singular action to be carried when a Rule

object’s conditional statement has been evaluated as “true”. Every Rule object will reference one or

more Action objects.

State Objects – State objects allow the user to effectively associate logical conditional statements with

the execution of a Rule object. Each State object will evaluate some aspect of the current system state

as either “true” or “false”. These objects in turn can be strung together via logical AND, OR, and NOT

statements to create more complex logic as required.

Rule Objects – Rule objects are actually a collection of references to (1) a single triggering Event object,

(2) one or more logically connected State objects, and (3) one or more Action objects. As previously

described state objects are optional and are used to create conditional logic to determine whether the

rule’s action object list should be executed. The list of Action objects describe one or more actions to be

performed when the conditional state logic has been fully evaluated and resolved to “true”.

Sensor Stream Objects – Each of these objects will define an individual sensor that you want the

SoftHub to connect to. Sensor Stream objects may either be for a specific type of sensor (e.g. any “BLE TI

SensorTag sensor”) or a specific physical sensor (e.g. the “BLE TI SensorTag sensor with the MAC ID of

9F77A834E722”). Note that Sensor Stream objects don’t “do” anything on their own but rather are used

as references in other objects.

User Report Objects – User Report objects simply allow the user to define their own data packets, in

either binary, JSON, or XML formats, aggregating data from a variety of sources. These packets in turn

can be forwarded to a remote server or logged to internal storage on the SoftHub device itself. As with

Sensor Stream objects, User Report objects don’t “do” anything on their own but rather are used as

references in other objects.

One common attribute that all objects share is that the user must provide a unique Object Name when

the object is initially created. The object name is the first parameter to be defined for all objects

regardless of type. As will become apparent, it is important to name your objects logically as many

objects will cross reference and build upon other objects.

4

1.3 Configuration File Contents and Deployment

To configure the SoftHub Application, the user must create and place the “RuleEngine.xml” file on the

physical hub hardware on which the SoftHub application is running. The exact location is specific to the

hardware platform being used and is documented in the software installation package. But in general,

the process is (1) the user runs the SoftHub Configuration Utility and generates the RuleEngine.xml file,

(2) the user places the file in the appropriate directory on the hub device, and (3) the user restarts the

SoftHub daemon or service on the hub device. At that point the SoftHub Application will read the

configuration file and continuously execute its ruleset in the background.

As is apparent by the filename, the configuration file itself is a simple XML file. The file contains two

main sections, the System Options settings which set system-wide global runtime options, and the Rule

Engine Directives which describe all the rule engine objects referenced by the rule engine ruleset and

the individual rule engine rules themselves. As will be apparent in coming sections, the UI of the SoftHub

Configuration Utility closely mimics the contents of the configuration file.

NOTE: The RuleEngine.xml file should NEVER be edited by hand. It is assumed that the configuration file

is syntactically correct when read by either the SoftHub Configuration Utility (for editing) or the SoftHub

Application itself. Minimal error detection is performed in either application so invalid configuration files

will have undefined results.

5

2. Using the SoftHub Configuration Utility

The SoftHub Configuration Utility is currently a somewhat minimal tool and as such has only one main

screen as its UI.

Figure 1: The SoftHub Configuration Utility main screen

There are four main areas of interest. First and foremost, on the left side of the screen is a panel

containing the configuration object navigation tree. To the far right is a collapsible context sensitive help

screen panel. The main panel (upper center) is where the currently selected object in the navigation tree

will be made available for editing. And at the bottom center is a panel where a running dialog of object

cross references for the currently selected object is presented.

The sections below describe the tool’s various components at a high level before delving into the actual

objects and settings themselves.

6

2.1 The Toolbar Menu

When opening the Configuration Utility the user will first either open an

existing file for editing or create a new file by using the “FILE” toolbar

entry in the upper left hand portion of the application screen (figure 2).

Once editing is complete, use “SAVE” to save the file with its current

name or “SAVE AS” to rename the file before saving. Note that before

deploying the configuration file to the actual hub device itself the file

must be renamed “RuleEngine.xml”. However when working with

several different configurations it is generally easier to give each file a

descriptive name and rename it only when deploying it to the hub

device.

2.2 Setting the Target Platform

Configuration files are built to be backwards compatible however not all hub platforms will support the

same functionality (e.g. Windows tablets will not support GPIO’s). For this reason, each configuration file

is associated with a specific hardware and software target environment.

The user sets the target environments by filling in the appropriate

information in the pop-up that will appear when “New” is selected from

the FILE toolbar menu. Figure 3 shows the pop-up and its fields. Choosing

the correct hardware target should be fairly obvious. When choosing the

software target it is important that you know what version is running in

the targeted hub device. Trying to load a file targeted for an incorrect

platform into the SoftHub Application will result in the application logging

an error and terminating.

Figure 2: The Configuration Utility
Toolbar

Figure 3: Target Platform Pop-up

Figure 2: The Configuration Utility
Toolbar

Figure 3: Target Platform Pop-up

7

2.3 The Configuration Options Panel

The Configuration Options Panel runs down the left side of the screen

and provides the navigation tree within the configuration file itself.

Again, the tree closely mimic’s the configuration file’s contents at the

highest two subsection levels. Under the “System Options” section,

global system-wide runtime options are listed and can be selected for

editing. Under the “Rule Engine” section users define the various

building block objects to be created by the SoftHub rule engine as well as

the Rule Objects themselves that dictate how the SoftHub Application

will operate.

Under the System Options tree are four sub-categories of options the

user can edit. Left clicking on the “Hub” label will populate the Current

Object pane with a set of general hub options that the user can edit and

make any desired changes. Left clicking the "Ble" label will allow the user

to edit the SoftHub's Bluetooth Low Energy interface options. Similarly,

left clicking on the “Email” label will allow the user to enter email SMTP

configuration information to enable the sending of email and SMS

messages directly from the hub device. Lastly, left clicking on the

“GPIOs” label will allow the user to define any input or output GPIO’s

they wish to manipulate via their ruleset.

Figure 4: High level Configuration
Tree nodes

Figure 5: System Option Labels

Figure 4: Highest level
Configuration Tree nodes

Figure 5: System Option Labels

8

Beneath the Rule Engine tree node are the various categories of objects

used by the SoftHub’s rule engine. As objects are created they will

appear under their respective category node. Right clicking on any of the

nodes and selecting “New” will present a pop-up allowing the user to

pick the specific object that they wish to create. Once a specific object is

selected the Current Object pane will be populated with all the

parameters that define the selected object type. Once the object has

been edited to the users’ satisfaction, the object is saved and it will now

appear as a node under the original object type branch.

The slight exception to this behavior is the “Events / Rules” category.

Most Event objects are created as a side effect of creating some other

object (excluding the AppStarting and AppStopping event objects). Since

every rule object is triggered by exactly one event object, rules are

created under the Event object nodes that populate under the “Events /

Rules” node of the tree. As event nodes are added you can right click on

those objects and select “New” to create a new Rule Object.

The example labeled “Figure 7” shows a typical tree with some nodes

expanded. You can see two GPIO’s that have been enabled, and two

Sensor Stream objects as well. There are several Event object nodes

shown with the “onButtonUp” event node object expanded to display its

list of associated Rule objects. Left clicking on any lowest level object

(e.g. the “TiBaroSensor” node) will populate the Current Object Pane

with the values currently defining that object. Right clicking on an

objects label will provide the user with two additional options, “Delete”

or “Duplicate”. Delete will delete the object while Duplicate will create a

duplicate of the object with the same values pre-populated with the

exception of the object name (which must be unique).

One important point to understand is that object nodes are created and

listed alphabetically. This has no practical effect except in relation to

Rule Objects. When an event is detected the rules are evaluated in the

order listed. This may be important as one Rule object’s Action objects

may impact a State object referenced by a subsequent Rule object. Using

numbers to prefix the rule object names (as in this example) allows the

user to ensure proper execution order.

As you navigate the Configuration Options panel its operation should become fairly apparent. Always

refer to the Help Panel, detailed in the following section, for the full list of options on any given screen.

Figure 6: Rule Engine Object Type
Labels

Figure 7: A typical Configuration
File navigation tree

Figure 6: Rule Engine Object Type
Labels

Figure 7: A typical Configuration
File navigation tree

9

2.4 The Help Panel

Figure 8 illustrates an example of a typical context sensitive help screen.

In this example a OneShotTimer action object would be selected in the

Configuration Options object tree and the specific object’s current

settings would be displayed in the Current Object Panel.

If a higher-level object category node is currently selected (i.e. not an

actual object node), the help file will give a description of the category as

well as what mouse button menus are available.

If an actual object node is selected, the help screen provides information

on the object and each of its editable parameters. Additionally, valid

parameter value ranges would be provided where appropriate.

Note that this panel is also fully collapsible to provide additional screen

space for the other panels if desired.

2.5 The Current Object Panel

At the heart of the Configuration Utility

main screen is the Current Object panel. This

panel is where all system options are edited

and all rule engine objects are created

and/or edited. Figure 9 shows a typical

object being edited in the Current Object

panel.

In the example the user has selected a

StartOneShotTimer action object in the

configuration object tree. It has been given

an object name of “doStartLongPressTimer”

and has a duration of 4000 milliseconds. An

event object, “onLongPressTimerExpired”, will be created as well and will be queued up every time the

“doStartLongPressTimer” timer expires.

While in this screen the user may make changes to any enabled parameters and save them via the

“Save” button. Occasionally fields may be disabled due to cross references by other objects. For those

fields, reference the Help screen for a full description of why the field is inactive and how to reactivate it

if required.

Figure 8: A Typical Help screen Figure 8: A typical Help screen

Figure 9: Typical object being edited in the Current Object panel

10

2.6 The Object Info Panel

The Object Information panel, at the center bottom of the main screen, gives the user information

regarding the object currently displayed in the Current Object edit panel. Due to the frequent cross

references between objects you may be unable to delete an object when it would invalidate a referring

object. This panel provides the user with a list of all objects cross-referencing the object currently being

edited.

Figure 10: Example Object Info cross references

11

3. SoftHub System Options

The System Options section of the configuration tree is where global system-wide settings are made

available for editing. The SoftHub’s system options are broken into four categories, (1) general hub

settings, (2) Bluetooth Low Energy interface settings, (3) email settings for optionally setting up an SMTP

server, and (4) GPIO settings for enabling any input and output GPIO pins on the physical hub device.

Left clicking on any of the sub-nodes (Hub, Ble, Email, or GPIOs) will populate Current Object pane with

that categories’ set of editable parameters. The sections below describe the settings currently available

in each of the System Options categories, including their function and value ranges. Note that much of

this information is also available directly in the Configuration Utility itself via the context sensitive Help

panels.

3.1 Hub Options

In this section of the System Configuration

options you will find a collection of global

options which control various general

components of the OmnIot SoftHub.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values

Hub Device ID The Hub Device ID is a numeric value which is used to uniquely
identify each hub you deploy. This identity value is particularly
relevant when sending data packets from multiple hub devices
to a central server in the cloud.

A numeric value between 0 and 65,535.

Hub Login ID The optional Hub Login ID specifies the login ID credential to be
required if remote logging in to the hub is enabled.

Valid values for the Hub Login ID are
alphanumeric strings of length between 4
and 24 characters, which may include
dashes, underscores, and dots.

Hub Login Password The optional Hub Login Password specifies the login password
credential to be required if remote login is enabled.

Valid values for the Hub Login Password
are alphanumeric strings of length
between 4 and 24 characters, which may
include dashes, underscores, and dots.

Hub Remote Login Enabled The Hub Remote Login Enabled option determines whether
remote logging into the hub device is allowed.

Y or N

Hub Listener Port This value indicates what listener port the SoftHub Application
will use for remote login capability (if enabled).

Value ranges are from 1 to 65,535,
however the user should ensure that the
chosen port is not currently in use.

Max Password Errors The Max Password Errors field determines the maximum
number of password errors to be allowed before a remote
connection will be terminated.

Valid values for the Max Password Errors
field are numerics from 0 to 100 where 0
indicates no limit on password errors.

Figure 11: Hub options screen

12

Max Connection Count The Max Connection Count field determines the maximum
number of concurrent login connections allowed when the Hub
Remote Login option is enable.

Valid values for the Max Connection
Count field range from 0 to 16.

Log File Directory The Log File Directory option determines where the hub writes
all log files in the local disk directory. This includes the system
log file as well as any user generated report or packet log files.

The Log File Directory option must be in a
valid directory format for the target
platform.

Network Cache Directory The Network Cache Directory option determines where the
hub writes all network cache files in the local disk directory
when network caching is enable.

The Network Cache Directory option
must be in a valid directory format for
the target platform.

Network Cache Enabled The Network Cache Enabled option determines whether
network caching will be available when the system has lost its
network connection. Network caching allows the system to
save packets that are undeliverable to local disk space. Once a
connection has been reestablished the undelivered packets will
be forwarded to the originally targeted remote server.

Y or N

Auto Start All Sensors The Auto Start All Sensors option determines whether the
sensors defined in the SoftHub rule set are to be automatically
started at application startup. When this option is set to "NO",
the user must manually enable each sensor stream by
executing an EnableSensorStream action object when
appropriate.

Y or N

13

3.2 Ble Settings

The Ble System Options settings allow the

user to set basic behaviors of the SoftHub's

Bluetooth Low Energy interface settings.

Supported Bluetooth Low Energy sensors

are of two types, sensors that provide a

traditional peer to peer connection, or

"beacon" sensors which publicly advertise

their data to be read by any listening hub

device. The SoftHub provides two modes

the Ble interface can be run in, a "mixed

mode" which supports both types of sensors

simultaneously, and a "beacons only" mode

which is tailored explicitly to applications

utilizing beacon sensors only. In practice, if

you're application is beacon only it is better to use the beacon only mode. This is because, when mixing

connection types, depending on the beacon sensor type there may be significant packet loss and/or

connectivity issues. See the notes on the individual fields below for more information.

The table below describes the available options and their valid value ranges.

Field Name Description Valid Values
BLE Conn Timeout (S) The BLE Conn Timeout is a numeric which indicates the

amount of time, in seconds, that a connected Bluetooth
Low Energy sensor can be inactive before being considered
disconnected. Note that this value has no significance
when "BLE Beacon Only Mode" is set to "Yes".

Valid values for the BLE Conn Timeout are integers
between 0 and 65,535.

BLE Beacon Timeout
(S)

The BLE Conn Timeout is a numeric which indicates the
amount of time, in seconds, that a connected Bluetooth
Low Energy beacon type sensor can be inactive before
being considered disconnected. Note that in this context,
"connected" refers to a beacon being actively monitored
though not connected in a traditional Ble sense.

Valid values for the BLE Beacon Timeout are
integers between 0 and 65,535, where 0 indicates
a beacon once connected will never time out.

BLE Beacon Only Mode Enabling BLE Beacon Only Mode tells the SoftHub to use
the lower level Linux API's to monitor for beacon packets.
This mode allows for unfiltered access to beacon packets
however it is incompatible with normal (non-beacon) BLE
connections. Enable this option only if you will not be
connecting any BLE sensors that are not beacon sensor.
Note that when attempting to connect a non-beacon Ble
sensor in this more you will receive many "connection
failed" messages in the SoftHub log.

This values are “Y” or “N”.

Figure 12: Ble Options screen

14

Bcn Mode Active Scan Enabling the Beacon Mode Active Scan allows the system
to connect with beacons by name (type) vs mac address.
The cost is that the additional overhead of continually
scanning devices for their device name will negatively
impact the battery life of all nearby beacons detected. This
may be acceptable if beacons are moving in an out or
range transiently, but when you expect to use a small set
number of sensors in your application it is preferable to
specify the sensor's mac addresses explicitly and disable
this option. Note that this value has no significance when
"BLE Beacon Only Mode" is set to "No".

This values are “Y” or “N”.

Bcn Mode Min Gap
(ms)

The BLE Conn Timeout is a numeric value that indicates a
minimal gap, in milliseconds, between two packets being
reported when in Beacon Only Mode. Since each packet
may be received on up to three separate channels, this
setting allows the user to filter out possible duplicate
packets being reported. Note that this value has no
significance when "BLE Beacon Only Mode" is set to "No".

Valid values for the Bcn Mode Min Gap are
integers between 0 and 65,535.

15

3.3 Email Settings

This section of the system configuration

options provides a collection of options

used to enable the SoftHub to directly send

email and SMS messages via the SendEmail

action object.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Enable Email Actions The Enable Email Actions option determines whether the

OmnIot SoftHub has been configured to send remote
email and SMS messages. Setting this option to "NO" will
disable the SendEmail action object in the OmnIot Hub
rule engine.

Y or N

Failed Email Cache Size The Failed Email Cache Size option determines the
maximum number of emails that will be cached when the
OmnIot SoftHub is unable to successfully send emails due
to a network connection being unavailable or some other
failure.

Valid values for the failed email cache size are
integers between 0 and 250.

SMTP Server ID The SMTP Server ID option identifies the SMTP mail server
that the OmnIot SoftHub should use when sending
outgoing email or SMS messages.

This value must be in a valid DNS name format.

SMTP Port The SMTP Port option identifies the SMTP port that the
OmnIot SoftHub should use when sending outgoing or
SMS messages to the target SMTP server.

Valid SMTP port values are integer values
between 0 and 65535.

SMTP Login ID The SMTP Login ID option identifies the login ID credential
that the OmnIot SoftHub should specify when logging in to
the remote SMTP server.

Limited to the character set of all alpha-numerics,
plus any of the following "!@#$%&-_. =".

SMTP Login Password The SMTP Login Password option identifies the login ID
password that the OmnIot SoftHub should specify when
logging into the remote SMTP server.

Limited to the character set of all alpha-numerics,
plus any of the following "!@#$%&-_.= ".

Primary Public IP The Primary Public IP Server identifies a remote server
that provides a service which will return the callers
originating IP address.

This value must be in a valid DNS name format.

Secondary Public IP
Server

The Secondary Public IP Server identifies a remote server
that provides a service which will return the callers
originating IP address. This server will be used only when
the Primary Public IP Server is unable to be reached.

This value must be in a valid DNS name format.

Figure 13: Email Options screen

16

3.4 GPIO Settings

The Enable GPIO Pin screen allows the user

to define the set of GPIO pins to be

referenced in the SoftHub ruleset.

Additionally, when defining an input pin,

users can create associated Event objects to

be queued for the SoftHub’s rule engine

whenever the pin transitions from one state

(i.e. "high" or "low") to the other. Similarly,

pins defined as output pins may be

manipulated via the SetGpioPinLow,

SetGpioPinHigh, and ToggleGpioPin Action

objects.

 The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Pin ID The pin ID field allows a user to select the GPIO pin to be

enabled.
Must be a valid pin number for the target
hardware platform.

Pin Type The Pin Type field allows the user to identify the selected
GPIO pin as either an INPUT or OUTPUT pin. Note that
only pins that are enabled as input pins will generate
GPIO transition events in the OmnIot SoftHub's logic
engine.

INPUT or OUTPUT

Debounce X100us The Debounce X100us option allows the user to set a
GPIO input pin's debounce time in increments of 100
microseconds. For instance, to set a debounce time of 5
milliseconds, set this option to 50.

Valid values for this field are integer numbers
between 0 and 65535.

Pin High Event When defining an input pin, this field names a
GpioPinHigh Event object to be queued in the SoftHub's
rule engine whenever the specified input pin transitions
from a low to a high state.

Valid object names may be between 4 to 40
characters in length and may include alphanumeric
characters as well as dashes, underscores, and
periods only.

Pin Low Event When defining an input pin, this field names a
GpioPinLow Event object to be queued in the SoftHub's
rule engine whenever the specified input pin transitions
from a high to a low state.

Valid object names may be between 4 to 40
characters in length and may include alphanumeric
characters as well as dashes, underscores, and
periods only.

Figure 14: The Enable GPIO Pin options screen

17

4. SoftHub Rule Engine Objects

This section will go through each of the object types and individual objects currently supported by the

most recent SoftHub rule engine. Many rule engine objects are hierarchical and so may incorporate

references to other objects in their definition. For this reason all object definitions require as their first

parameter a user selected Name that it will be referenced by. Names should be chosen to clearly

identify the object type and function in as much as possible.

Though it has been stated elsewhere in this document it is worth repeating that the central operating

tenant of the SoftHub rule engine is –

(1) As supported events are detected by the various components of the SoftHub application, Event

Objects are created and placed in the rule engine’s event queue.

(2) As they arrive, the SoftHub’s rule engine will pop an event object off its event queue and will

sequentially evaluate each Rule Object the user has associated with the particular Even Object.

(3) Each Rule Object may have optional conditional logic associated with its execution. This state

logic consists of one or more State Objects connected by a series of Boolean operators.

(4) If the conditional logic ultimately evaluates to “true” (or is omitted entirely), each of the Action

Objects referenced by the Rule Object will in turn be executed sequentially.

Note that if you are running older versions of the SoftHub application on your hub devices, all listed

objects may not be supported on the older platforms. Properly setting the target software platform

when initially creating your configuration file will hide unsupported object types within the SoftHub

Configuration Utility. This is normal and expected behavior.

4.1 Sensor Stream Objects

Sensor Stream Objects describe the sensors that you want to make available to your hub device. The

OmnIoT SoftHub Platform has an ever-growing library of supported sensors to choose from. Adding a

new sensor to your application is a simple as choosing it from a dropdown menu and filling the required

parameters to ensure you connect the proper sensor. In the SoftHub configuration file, sensors may be

mixed and matched from multiple manufacturers or even different technologies (if supported by your

hub hardware). Currently the SoftHub supports ANT and BLE sensor technologies, however future

releases will be expanded to other include other low energy sensor technologies as well.

18

4.1.01 AntSensorStream Sensor Stream object

Creating a new AntSensorStream object

allows you to choose an ANT sensor to

connect to your hub. Here you pick the

sensor type and optionally the specific

sensor serial number. You may then

reference this connection and any of the

sensor data fields it provides in your Action,

State, and Event, and Report objects.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object entry

when cross-referenced by other configuration objects. The
name you choose should appropriately describe the object
you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters
as well as dashes, underscores, and periods only.

Sensor Type This is a drop-down list of ANT sensors supported for the
currently selected target hardware and software platform.
Use this drop-down list to select the type of Ant sensor you
wish to connect to.

Any listed sensor type.

Sensor ID This is an optional field where you can enter a specific
sensor ID. If you do not specify a sensor ID the system will
connect to the first available sensor it finds that matches
the specified Sensor Type.

Valid Senor ID values are numeric values
between 1 and 65,535.

Sensor Connect Event This field names a SensorConnect Event object to be queued
in the SoftHub's rule engine whenever a successful
connection has been established with the sensor being
defined.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters
as well as dashes, underscores, and periods only.

Sensor Disconnect
Event

This field names a SensorDisconnect Event object to be
queued in the SoftHub's rule engine whenever a
disconnection has been detected from the sensor being
defined. (due to either a DisableSensorStream Action being
triggered or an unplanned loss of signal).

Names may be between 4 to 40 characters in
length and may include alphanumeric characters
as well as dashes, underscores, and periods only.

New Packet Event This field names a NewSensorPacket Event object to be
queued in the Hub's Rule Engine whenever a new packet
has been received from the sensor being defined.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters
as well as dashes, underscores, and periods only.

Figure 15: The Ant Sensor Stream object

19

4.1.02 BleSensorStream Sensor Stream object

Creating a new BleSensorStream object

allows you to choose an BLE sensor to

connect to your hub. Here you pick the

sensor type and optionally the specific

sensor mac address. You may then

reference this connection and any of the

sensor data fields it provides in your Action,

State, and Event, and Report objects.

The table below describes the available

options and their valid value ranges

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters
as well as dashes, underscores, and periods only.

Sensor Type This is a drop-down list of Bluetooth LE sensors
supported for the currently selected target hardware and
software platform. Use this drop-down to select the type
of Bluetooth LE sensor you wish to connect to.

Any listed sensor type.

Sensor ID This is an optional field where you can enter a specific
sensor ID. If you do not specify a sensor ID the system
will attach to the first available sensor it finds that
matches the specified Sensor Type.

Valid Sensor ID values are 17 character strings in a
valid BLE mac address format.

Sensor Options String This is an optional field where you can specify sensor
specific options such as a sensor name alias or pairing pin
code. Options for individual sensors are detailed in the
supported sensors spreadsheet provided as part of the
installation package. Option strings must have the format
of OPTION="????" where OPTION is the option specifier
and ???? is the option value (which must be in quotes).
More than one option can be passed by placing a single
semicolon between options (spaces are not allowed).

A string consisting of one or more user options
separated by a single semicolon (with no spaces).
As an example,

ALIAS=”acmeTemp”;”PAIRPIN=”000000”

Would be a valid string specifying two user
options, one an alias device name and the other a
pairing pin.

Enabled Data Streams Here you will find a list of the specific data streams
supported by the currently chosen Sensor Type. Highlight
and select the sensor data stream entries for each of the
streams you wish to enable. Note that only data from the
streams selected will be available the system.

Multi-select one or more sensor data streams to
be enabled.

Sensor Connect Event This field names a SensorConnect Event object to be
queued in the SoftHub's rule engine whenever a
successful connection has been established with the
sensor being defined.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters
as well as dashes, underscores, and periods only.

Figure 16: The BLE Sensor Stream object

20

Sensor Disconnect Event This field names a SensorDisconnect Event object to be
queued in the SoftHub's rule engine whenever a
disconnection has been detected from the sensor being
defined. (due to either a DisableSensorStream Action
being triggered or an unplanned loss of signal).

Names may be between 4 to 40 characters in
length and may include alphanumeric characters
as well as dashes, underscores, and periods only.

New Packet Event This field names a NewSensorPacket Event object to be
queued in the Hub's Rule Engine whenever a new packet
has been received from the sensor being defined.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters
as well as dashes, underscores, and periods only.

21

4.2 User Report Objects

Custom tailored report packets can be created via the User Report Object. This allows the user to

aggregate data values from multiple sources and consolidate them into a single packet. The packets can

then be sent to one or more remote servers or logged to the SoftHub’s internal storage. Currently these

packets may include the most recent data values from one or more connected sensors, averaged data

values, cached data values, or momentary GPIO pin values. Packets may be generated in either binary,

JSON, or XML format. User Reports with no items can be used to indicate user defined event detections.

4.2.01 UserReport User Report object (Main)

The UserReport object allows the user to

create, name, and add report sections to a

custom packet. These custom packets can

then be sent to a remote cloud server or

logged to the hub devices internal storage

via the SendReport and LogReport action

objects respectively.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object entry

when cross-referenced by other configuration objects. The
name you choose should appropriately describe the object you
are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric
characters as well as dashes, underscores, and
periods only.

Report ID The Report ID field gives the report a unique identification to
indicate what fields the report packet contains. This is
particularly important when generating binary report packets.

Report IDs may be alphanumeric for JSON or
XML reports but must be unsigned 16-bit
integers for binary reports.

Report Format The Report Format field allows you choose whether the
generated report packets will be in JSON, XML or binary
format. Binary formatted report packets will be much smaller
than JSON or XML formatted packets, while JSON/XML
formatted packets have the benefit of being human eye
readable and interchangeable with many other applications.

BIN, JSON, or XML

Report Items In the Report Items list-box, select the data items that you
wish to include in the report packet. Clicking the Add button
will generate a pop-up with a drop-down of the different types
of data items that can be added to your report. Each data item
will in turn have its own data entry screen and fields. Currently
supported Report Item types include Sensor Data Values,
Averaged Sensor Data Values, Cached Sensor Data Values, and
GPIO Pin Values. Note also that by using the Edit, Delete, Up,
and Down buttons you are able to further customize the
format of your report.

N/A

Figure 17: The User Report summary screen

22

4.2.02 UserReport User Report object (Sensor Stream Data)

Clicking “Add” in the main User Report

screen and choosing “Sensor Stream Data”

will present the Sensor Stream Data

selection screen as shown in Figure 17.

When adding sensor data to your report you

can limit the data you would like to include

by selecting only the data values within the

packet that are of interest. Choosing from

the drop-down list of previously defined

sensor streams, the user will see a list of

available data values that stream provides.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Sensor Stream Name This drop-down will present a list of all previously defined

SensorStream objects.
Any value in the list.

Sensor Data Values This multi-select list will contain each of the data value
fields previously enabled for the selected SensorStream
object.

One or more values in the list.

Figure 18: Add Sensor Stream Data screen

23

4.2.03 UserReport User Report object (Sensor Data Average)

Clicking “Add” in the main User Report

screen and choosing “Sensor Data Average”

will present the Sensor Data Average

selection screen as shown in Figure 18. This

is a multi-select box, allowing the user to

choose one or more previously defined data

averager objects.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Data Averager Names This drop-down will provide a list of Sensor Data Averager

objects created from previous definitions of any
InitSensorDataAverager Action objects.

Any previously defined data averager object.

Figure 19: Add Sensor Data Average screen

24

4.2.04 UserReport User Report object (Sensor Data Cache)

Clicking “Add” in the main User Report

screen and choosing “Sensor Data Cache”

will present the Sensor Data Cache selection

screen as shown in Figure 19. Choosing a

previously defined Sensor Data Cache object

from the dropdown and selecting how many

samples to report will include the most

recent “N” samples that have been added to

the selected cache.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values

Data Cache Name This drop-down will include a list of Sensor Data Cache
objects created from previous definitions of any
InitSensorDataCache Action objects.

Any previously defined Sensor Data Cache object.

Samples to Report Here you can specify the number of cached values to be
included in the report. The values reported will reflect the
most recently cached values going back in time up until the
number of requested values are reported or the number of
currently cached values have been exhausted.

This value must be a number in the range of 1 to
the defined cache size.

Figure 20: Add Sensor Data Cache screen

25

4.2.05 UserReport User Report object (GPIO Pin Values)

Clicking “Add” in the main User Report

screen and choosing “GPIO Pin Values” will

present the GPIO Pin Values selection

screen as shown in Figure 20. Here the user

can select one or more GPIO values to be

included in their custom report packet. It is

important to understand that the GPIO

values are “momentary”, i.e. will reflect the

GPIO value only at the specific moment the

report was assembled.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values

GPIO Pin ID's This is a multi-select list of GPIO pins in your system that
have been previously enabled in the GPIOs System Options
screen.

Multi-select one or more GPIO pin(s) from the list.

Figure 21: Add GPIO Pin Values screen

26

4.3 Event Objects

As events occur or are detected by different components of the SoftHub, a corresponding Event Object

will be put into the rule engines’ event queue. The events are then popped off the queue by the rule

engine in “first in first out” order. If the user has defined any rules to be triggered by the specific event,

then each rules’ optional conditional logic will be evaluated and if true will result in the rule’s action

object list being executed. It is important to remember that both rules and action objects will be

evaluated/executed in the order defined in the SoftHub Configuration File.

With the exception of the AppStarting and AppStopping event objects, all other event objects are

created as a side effect of creating some other object. For instance, during the process of creating a new

BleSensorStream object the user will have the opportunity to create associated event objects for when

the sensor connects, disconnect, or sends a new packet.

4.3.01 AppStarting Event object

A AppStarting Event object is automatically

placed as the first event object in the

SoftHub’s rule engine on application

startup. Rules that are typically triggered at

startup include rules to initializing flags,

counters, connecting sensors, etc..

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in length
and may include alphanumeric characters as well as
dashes, underscores, and periods only.

Figure 22: The System Startup Event object

27

4.3.02 AppStopping Event object

A AppStopping Event object will be placed in

the SoftHub rule engine’s event queue once

a stop command has been received either

externally or internally. Typically rules

performing any system cleanup activities

would be associated with the AppStopping

event if required.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in length
and may include alphanumeric characters as well as
dashes, underscores, and periods only.

4.3.03 UserDefinedEvent Event object

A UserDefinedEvent Event object will be

placed in the SoftHub rule engine’s event

only when a message from a remote MQTT

server has been received specifying the

name associated with the event.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when triggering it from a remote MQTT broker
message. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in length
and may include alphanumeric characters as well as
dashes, underscores, and periods only.

Figure 23: The System Shutdown Event object

Figure 24: The User Defined Event object

28

4.3.04 SensorConnect Event object

SensorConnect Event objects are created as

a side effect of defining a Sensor Stream

object. During that process if the user so

chooses they may elect to associate a

SensorConnect event object to be queued

when the Sensor Stream being created

connects to the system.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object entry

when cross-referenced by other configuration objects. The
name you choose should appropriately describe the object
you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Sensor Stream Name This field is prefilled and not editable. It names the
SensorStream object that the user previously created and
associated with this SensorConnect event.

N/A

4.3.05 SensorDisconnect Event object

SensorDisconnect events are created as a

side effect of defining a Sensor Stream

object. During that process if the user so

chooses they may elect to associate a

SensorDisconnect event object to be

queued when the Sensor Stream being

described disconnects from the system.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object entry

when cross-referenced by other configuration objects. The
name you choose should appropriately describe the object
you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters
as well as dashes, underscores, and periods only.

Sensor Stream Name This field is prefilled and not editable. It names the
SensorStream object that the user previously created and
associated with this SensorDisconnect event.

N/A

Figure 254: The Sensor Connect Event object

Figure 26: The Sensor Disconnect Event object

29

4.3.06 NewSensorPacket Event object

NewSensorPacket events are created as a

side effect of defining a Sensor Stream

object. During that process if the user so

chooses they may elect to associate a

NewSensorPacket event object to be

queued every time a new packet is received

from the specified Sensor Stream.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object entry

when cross-referenced by other configuration objects. The
name you choose should appropriately describe the object
you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters
as well as dashes, underscores, and periods only.

Sensor Stream Name This field is prefilled and not editable. It names the
SensorStream object that the user previously created and
associated with this SensorDisconnect event.

N/A

4.3.07 GpioPinLow Event object

GpioPinLow events are created as a side

effect of enabling an input GPIO in the

system options. During that process if the

user so chooses they may elect to associate

a GpioPinLow event to be queued every

time the pin being defined transitions from

a high to a low state.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in length
and may include alphanumeric characters as well as
dashes, underscores, and periods only.

GPIO This field is prefilled and not editable. It names the input
GPIO pin that the user previously created and associated
with this GpioPinLow event.

N/A

Figure 27: The New Sensor Packet Event object

Figure 287: The GPIO Pin Low Event object

30

4.3.08 GpioPinHigh Event object

GpioPinHigh events are created as a side

effect of enabling an input GPIO in the

system options. During that process if the

user so chooses they may elect to associate

a GpioPinHigh event to be queued every

time the pin being defined transitions from

a low to a high state.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in length
and may include alphanumeric characters as well as
dashes, underscores, and periods only.

GPIO This field is prefilled and not editable. It names the input
GPIO pin that the user previously created and associated
with this GpioPinHigh event.

N/A

4.3.09 TimerExpired Event object

TimerExpired objects are created as a side

effect when the user defines a timer

through any of the timer action object

screens (e.g. StartOneShotTimer Action

objects). During that process the user has

the option to have a TimerExpired event

queued anytime the timer being defined

expires.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in length
and may include alphanumeric characters as well as
dashes, underscores, and periods only.

Timer Name This field is prefilled and not editable. It names the timer
object that the user previously created and associated
with this TimerExpired event.

N/A

Figure 29: The GPIO Pin High Event object

Figure 30: The Timer Expired Event object

31

4.4 Action Objects

This section describes each of the currently available Action Objects for use with the SoftHub

Application. Action objects should be thought of as simple stand-alone executable objects. When a Rule

object’s optional conditional logic is resolved as “true”, its associated list of Action objects will be

executed sequentially in the order they are listed.

4.4.01 EnableSensorStream Action object

When executed, the EnableSensorStream

Action object will enable a previously

defined Sensor Stream object. When

enabled, the SoftHub application will

continuously attempt to connect to the

sensor specified by the associated Sensor

Stream object. To later disable/disconnect

the Sensor Stream, execute a subsequent

DisableSensorStream Action object.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Sensor Stream Name This drop-down will present a list of all previously defined
Sensor Stream objects.

Any drop-down item.

Figure 30: The Enable Sensor Stream Action object

32

4.4.02 DisableSensorStream Action object

When executed, the DisableSensorStream

Action object will disable a previously

enabled Sensor Stream object. When

disabled, the SoftHub application will

attempt to disconnect from the specified

Sensor Stream. Note that enabling Sensor

Streams may be performed either via the

EnableSensorStream Action object or by

enabling “Auto Start All Sensors” in the Hub

System Options screen.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Sensor Stream Name This drop-down will present a list of all previously defined
Sensor Stream objects.

Any drop-down item.

4.4.03 EnableBleNotifications Action object

When executed, the EnableBleNotifications

object will enable notifications from the

Bluetooth LE characteristic identified by the

Source Stream and Sensor Data Value

selected.

The table below describes the available

options and their valid value ranges.

Figure 31: The Disable Sensor Stream Action object

Figure 32: The Enable Ble Notifications Action object

33

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Source Stream Name This drop-down will present a list of all previously defined
Ble Sensor Stream objects.

Any drop-down list entry.

Sensor Data Value This drop-down list will contain each of the data value
fields previously enabled for the selected Sensor Stream
object which support “notify” operations.

Any drop-down list entry.

4.4.04 DisableBleNotifications Action object

When executed, the DisableBleNotifications

object will disable further notifications from

the Bluetooth LE characteristic identified by

the Source Stream and Sensor Data Value

selected.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Source Stream Name This drop-down will present a list of all previously defined
Ble Sensor Stream objects.

Any drop-down list entry.

Sensor Data Value This drop-down list will contain each of the data value
fields previously enabled for the selected Sensor Stream
object which support “notify” operations.

Any drop-down list entry.

Figure 33: The Disable Ble Notifications Action object

34

4.4.05 InitiateBleRead Action object

When executed, the InitiateBleRead object

will initiate an asynchronous read operation

for the Bluetooth LE characteristic identified

by the Source Stream and Sensor Data Value

selected.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Source Stream Name This drop-down will present a list of all previously defined
Ble Sensor Stream objects.

Any drop-down list entry.

Sensor Data Value This drop-down list will contain each of the data value
fields previously enabled for the selected Sensor Stream
object which support “read” operations.

Any drop-down list entry.

4.4.06 InitiateBleWrite Action object

hen executed, the InitiateBleWrite object

will initiate an asynchronous write

operation to the Bluetooth LE characteristic

identified by the Source Stream and Sensor

Data Value selected.

The table below describes the available

options and their valid value ranges.

Figure 34: The Initiate Ble Read Action object

Figure 345: The Initiate Ble Write Action object

35

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Source Stream Name This drop-down will present a list of all previously defined
Ble Sensor Stream objects.

Any drop-down list entry.

Sensor Data Value This drop-down list will contain each of the data value
fields previously enabled for the selected Sensor Stream
object which support “write” operations.

Any drop-down list entry.

Write Data (Hex) In this textbox the user provides the hex representation of
the data bytes to be written to the Ble characteristic (e.g.
to write two bytes, “0x03” and “0x1F”, to the
characteristic you would enter 031F).

A valid string representing a series of hexadecimal
bytes.

4.4.07 StartOneshotTimer Action object

When executed, the StartOneshotTimer

Action object will start a “one shot” (i.e.

non-repeating) timer. Timers are used

typically to queue TimerExpired Event

objects at expiration, which in turn may

trigger the evaluation or one or more Rule

objects. This timer is a “relative” timer,

expiring at a set interval in the future. To set

a timer for a specific absolute time in the

future see the “Time of Day” timers. Note

also that while timer values are specified in

millisecond intervals some amount of drift is

to be expected in non-realtime operating

systems.

The table below describes the available options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in length and
may include alphanumeric characters as well as dashes,
underscores, and periods only.

Timer Duration The Timer Duration value indicates the number of
milliseconds before the timer will expire.

Valid timer values are numbers between 50 and
18,446,744,073,709,551,615.

Timer Expired Event This field names a TimerExpired Event object to be
queued in the SoftHub's rule engine when the
defined timer has expired.

Names may be between 4 to 40 characters in length and
may include alphanumeric characters as well as dashes,
underscores, and periods only.

Figure 35: The Start Oneshot Timer Action object

36

4.4.08 StartContinuousTimer Action object

When executed, the StartContinuousTimer

Action object will start a timer which will

continuously restart itself once expired until

a corresponding StopTimer Action object is

executed in its name. Timers are used

typically to queue TimerExpired Event

objects at expiration, which in turn may

trigger the evaluation or one or more Rule

objects. This timer is a “relative” timer,

expiring at a set interval in the future. To set

a timer for a specific absolute time in the

future see the “Time of Day” timers. Note

also that while timer values are specified in

millisecond intervals some amount of drift is

to be expected in non-realtime operating systems.

The table below describes the available options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in length and
may include alphanumeric characters as well as dashes,
underscores, and periods only.

Timer Duration The Timer Duration value indicates the number of
milliseconds before the timer will expire.

Valid timer values are numbers between 50 and
18,446,744,073,709,551,615.

Timer Expired Event This field names a TimerExpired Event object to be
queued in the SoftHub's rule engine when the
defined timer has expired.

Names may be between 4 to 40 characters in length and
may include alphanumeric characters as well as dashes,
underscores, and periods only.

Figure 37: Start Continuous Timer Action object

37

4.4.09 StartOneShotTodTimer Action object

When executed, the StartOneShotTODTimer

Action object will start a “one shot” (i.e.

non-repeating) “time of day” timer. Timers

are used typically to queue TimerExpired

Event objects at expiration, which in turn

may trigger the evaluation or one or more

Rule objects. This timer is an “absolute”

timer, expiring at a specific time in the

future. Note also that time of day timers

rely on the systems internal clock to be

accurately set. This may not be possible on

non-networked hub devices without access

to NTP services.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Timer Time Of Day This is the time of day value you wish the timer to expire. Valid values must be specified in the 24 hour
format of "HH:MM:SS" (e.g. "14:05:00" for 2:05
PM).

Timer Expired Event This field names a TimerExpired Event object to be queued
in the SoftHub's rule engine when the defined timer has
expired.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Figure 38: Start One Shot TOD Timer Action object

38

4.4.10 StartContinuousTodTimer Action object

The StartContinuousTodTimer Action object

will start a “time of day” timer which will

expire at the same time every day until a

corresponding StopTimer Action object is

executed in its name. Timers are used

typically to queue a TimerExpired Event

objects at expiration, which in turn may

trigger the evaluation or one or more Rule

Objects. This timer is an “absolute” timer,

expiring at a specific time in the future.

Note also that time of day timers rely on the

systems internal clock to be accurately set.

This may not be possible on non-networked

hub devices without access to NTP services.

The table below describes the available options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Timer Time Of Day This is the time of day value you wish the timer to expire. Valid values must be specified in the 24 hour
format of "HH:MM:SS" (e.g. "14:05:00" for 2:05
PM).

Timer Expired Event This field names a TimerExpired Event object to be queued
in the SoftHub's rule engine when the defined timer has
expired.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Figure 39: The Start Continuous TOD Timer Action object

39

4.4.11 StopTimer Action object

Executing a StopTimer action will cancel a

previously started timer and prohibit its

associated TimerExpired Event object from

being queued.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object entry

when cross-referenced by other configuration objects. The
name you choose should appropriately describe the object you
are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric
characters as well as dashes, underscores, and
periods only.

Timer Name This drop-down will present a list of all previously defined
Timer objects. Note that Timer objects are automatically
derived when a StartOneShotTimer, StartContinuousTimer,
StartOneShotTodTimer, or StartContinuousTodTimer Action
object is executed.

Any drop-down list entry.

4.4.12 SendData Action object

The SendData Action object will send the

most recent raw data packet received from

a Sensor Stream to a remote packet capture

server over a TLS encrypted connection.

Typically the remote server will be running

the OmnIoT Remote Packet Capture Service

which will receive and decode the incoming

packets. To ensure zero packet loss the user

should enable packet caching.

The table below describes the available

options and their valid value ranges.

Figure 40: The Stop Timer Action object

Figure 41: The Send Data Action object

40

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters
as well as dashes, underscores, and periods only.

Source Stream Name This drop-down will present a list of all previously
defined Sensor Stream objects.

Any drop-down list entry.

Destination IP This field is the IP address of the remote packet capture
server.

Any valid Ipv4 or Ipv6 format IP address.

Destination Port This field indicates the port number on the remote server
which the packet receiver will be listening on.

A valid integer in the range of 1 to 65,535.

4.4.13 SendReport Action object

When executed, the SendReport Action

object will trigger the assembling of a

previously defined UserReport Report object

(custom packet) which in turn will be

forwarded to the specified remote server

over a TLS encrypted connection. Typically

the remote server will be running the

OmnIoT Remote Packet Capture Service

which will receive and decode the incoming

packets. To ensure zero packet loss the user

should enable packet caching.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters
as well as dashes, underscores, and periods only.

Source Report Name This drop-down will present a list of all previously defined
UserReport Report objects.

Any drop-down list entry.

Destination IP This field is the IP address of the remote packet capture
server.

Any valid Ipv4 or Ipv6 format IP address

Destination Port This field indicates the port number on the remote server
which the packet receiver will be listening on.

A valid integer in the range of 1 to 65,535.

Figure 42: The Send Report Action object

41

4.4.14 PublishData Action object

The PublishData Action object will publish

the most recent raw data packet received

from a Sensor Stream to a remote MQTT

broker. The SoftHub is compatible with

most third-party cloud based platforms

providing an MQTT interface. To ensure

zero packet loss the user should enable

packet caching.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters
as well as dashes, underscores, and periods only.

Source Stream Name This drop-down will present a list of all previously
defined Sensor Stream objects.

Any drop-down list entry.

Message Format Dictates the format the message will be published in. Any drop-down list entry.

Message Topic Specifies the topic the message will be published to. Valid values for this field include any printable
characters up to 256 bytes in length.

Device Control Topic Specifies the topic for the SoftHub to monitor for
incoming remote control packets.

Valid values for this field include any printable
characters up to 256 bytes in length.

Server User Name The login name to be used when connecting to the
remote MQTT broker

Valid values for this field include any printable
characters up to 256 bytes in length.

Server Password The login password to be used when connecting to the
remote MQTT broker

Valid values for this field include any printable
characters up to 256 bytes in length.

Server Client ID The Client ID to be used when connecting to the remote
MQTT broker

Valid values for this field include any printable
characters up to 256 bytes in length.

Server Address The server address of the target remote MQTT broker. Valid values for this field include any printable
characters up to 256 bytes in length.

Trusted Store File The local SSL trusted store file name to be used. Valid values for this field include any printable
characters up to 256 bytes in length.

Key Store File The local SSL key store file name to be used. Valid values for this field include any printable
characters up to 256 bytes in length.

Extended Options File The name of an Extended Options File for providing
additional connection parameters.

Valid values for this field include any alpha-
numeric characters up to 64 bytes in length. Note
that when specifying an Extended Options File, the
filetype (.mcfg) should be omitted.

Figure 43: The Publish Data Action object

42

4.4.15 PublishReport Action object

When executed, the PublishReport Action

object will trigger the assembling of a

previously defined UserReport Report object

(custom packet) which in turn will be

published to the specified remote MQTT

broker. The SoftHub is compatible with

most third-party cloud based platforms

providing an MQTT interface. To ensure

zero packet loss the user should enable

packet caching.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters
as well as dashes, underscores, and periods only.

Source Report Name This drop-down will present a list of all previously defined
UserReport Report objects.

Any drop-down list entry.

Message Topic Specifies the topic the message will be published to. Valid values for this field include any printable
characters up to 256 bytes in length.

Device Control Topic Specifies the topic for the SoftHub to monitor for
incoming remote control packets.

Valid values for this field include any printable
characters up to 256 bytes in length.

Server User Name The login name to be used when connecting to the
remote MQTT broker

Valid values for this field include any printable
characters up to 256 bytes in length.

Server Password The login password to be used when connecting to the
remote MQTT broker

Valid values for this field include any printable
characters up to 256 bytes in length.

Server Client ID The Client ID to be used when connecting to the remote
MQTT broker

Valid values for this field include any printable
characters up to 256 bytes in length.

Server Address The server address of the target remote MQTT broker. Valid values for this field include any printable
characters up to 256 bytes in length.

Trusted Store File The local SSL trusted store file name to be used. Valid values for this field include any printable
characters up to 256 bytes in length.

Key Store File The local SSL key store file name to be used. Valid values for this field include any printable
characters up to 256 bytes in length.

Extended Options File The name of an Extended Options File for providing
additional connection parameters.

Valid values for this field include any alpha-
numeric characters up to 64 bytes in length. Note
that when specifying an Extended Options File, the
filetype (.mcfg) should be omitted.

Figure 44: The Publish Report Action object

43

4.4.16 LogData Action object

When executed, the LogData Action object

will write the raw packet most recently

received from the referenced Sensor Stream

to a logfile on the hub devices’ local storage.

If desired, the default log file directory can

be overridden in the System Options screen.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Source Stream Name This drop-down will present a list of all previously defined
Sensor Stream objects.

Any drop-down list entry.

Data Log Filename The data log file name specifies the log file that the data
will be written to in the log file directory. Note that the
name chosen will be automatically suffixed with “.log”.

Must be an alphanumeric string between 2 and 40
characters in length.

4.4.17 LogReport Action object

When executed, the LogReport Action

object will trigger the assembling of a

previously defined UserReport Report object

(custom packet) which in turn will be logged

to a logfile on the hub devices’ local storage.

If desired, the default log file directory can

be overridden in the System Options screen.

The table below describes the available

options and their valid value ranges.

Figure 45: The Log Data Action object

Figure 46: The Log Report Action object

44

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters
as well as dashes, underscores, and periods only.

Source Report Name This drop-down will present a list of all previously defined
UserReport Report objects.

Any drop-down list entry.

LogReport Filename The data log file name specifies the log file that the data
will be written to in the log file directory. Note that the
name chosen will be automatically suffixed with “.log”.

Must be an alphanumeric string between 2 and 40
characters in length.

4.4.18 SendEmail Action object

When executed, the SendEmail Action

object will queue an email or SMS message

to be sent to listed recipient(s). Note that

these objects rely on the SMTP Email

parameters in the SoftHub’s Email System

Options screen having been configured

correctly.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in length
and may include alphanumeric characters as well as
dashes, underscores, and periods only.

To Field This field must contain one or more email addresses in
a valid email format. If more than one address is
specified each address should be separated by a
semicolon.

Limited to the character set of all alpha-numerics,
plus any of the following "=-.,:/@!#$%&*+^_{}~".

From Field This field should reflect the email address related to the
SMTP login credentials specified in the Email System
Options configuration section.

Character set limited as above.

Subject Field This field will be sent as the subject. Character set limited as above, length limited to 0 to
40 characters.

Add Signature This field determines whether the system will append a
signature to the message indicating the time it was
produced as well as the originating hub ID.

Any drop-down list entry.

Email Body This field will be sent as the email (or SMS) body. Character set limited as above, length limited to 0 to
140 characters.

Figure 47: The Send Email Action object

45

4.4.19 Initialize Flag Action object

When executed, the InitializeFlag Action

object will create and initialize a new Flag

object. Once Flag objects have been created

they can be set, cleared, or toggled with the

SetFlag, ClearFlag, and ToggleFlag Action

objects. Flag object states are also typically

incorporated into Rule object conditional

statements via the FlagState State object.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in length
and may include alphanumeric characters as well as
dashes, underscores, and periods only.

Initial Value This drop-down allows the user to set the initial value of
the flag being created to either TRUE or FALSE.

Any drop-down list entry.

4.4.20 SetFlag Action object

When executed, the SetFlag Action object

will set a previously created Flag object to a

“true” state. Flag object states may be

incorporated into Rule object conditional

statements via the FlagState State object.

The table below describes the available

options and their valid value ranges.

Figure 48: The Initialize Flag Action object

Figure 49: The Set Flag Action object

46

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Flag Name This drop-down will present a list of all previously defined
Flag objects. Note that Flag objects are automatically
derived when a new InitializeFlag Action object is
executed.

Any drop-down list entry.

4.4.21 ClearFlag Action object

When executed, the ClearFlag Action object

will set a previously created Flag object to a

“false” state. Flag object states may be

incorporated into Rule object conditional

statements via the FlagState State object.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Flag Name This drop-down will present a list of all previously defined
Flag objects. Note that Flag objects are automatically
derived when a new InitializeFlag action object is
executed.

Any drop-down list entry.

Figure 50: The Clear Flag Action object

47

4.4.22 ToggleFlag Action object

When executed, the ToggleFlag Action

object will invert a previously created Flag

objects’ current logical state. Flag object

states may be incorporated into Rule object

conditional statements via the FlagState

State object.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Flag Name This drop-down will present a list of all previously defined
Flag objects. Note that Flag objects are automatically
derived when a new InitializeFlag action object is
executed.

Any drop-down list entry.

4.4.23 InitializeCounter Action object

When executed, the InitializeCounter Action

object will create and initialize a new

Counter object. Once a Counter object has

been created it may be incremented or

decremented with the IncrementCounter

and DecrementCounter Action objects.

Counter object states may also be

incorporated into Rule object conditional

statements via the CounterValue State

object.

The table below describes the available

options and their valid value ranges.

Figure 51: The Toggle Flag Action object

Figure 52: The Initialize Counter Action object

48

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Initial Value The Initial Value field defines the value that the created
counter will be set to initially.

Valid values include signed integer numbers
between –2,147,483,648 and 2,147,483,647. Note
that the Initial Value field's absolute value must be
less than any specified Counter Modulus value
(unless the modulus is 0).

Counter Modulus The Counter Modulus field allows you to set a modulus
value for the counter.

Valid values include unsigned integers between 0
and 2,147,483,647. To disable modulus processing
you can set this value to 0.

4.4.24 IncrementCounter Action object

When executed, the IncrementCounter

Action object will increment a previously

created Counter object by the specified

value. Counter object states may be

incorporated into Rule object conditional

statements via the CounterValue State

object.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object entry

when cross-referenced by other configuration objects. The
name you choose should appropriately describe the object
you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters
as well as dashes, underscores, and periods only.

Counter Name This drop-down will present a list of all previously defined
Counter objects. Note that Counter objects are
automatically derived any time a new InitializeCounter
Action object is executed.

Any drop-down list entry.

Increment Value This value represents the value that will be added to the
counter when the IncrementCounter Action object is
executed.

Valid values include signed integer numbers
between –2,147,483,648 and 2,147,483,647.

Figure 53: The Increment Counter Action object

49

4.4.25 DecrementCounter Action object

When executed, the DecrementCounter

Action object will decrement a previously

created Counter object by the specified

value. Counter object states may be

incorporated into Rule object conditional

statements via the CounterValue State

object.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object entry

when cross-referenced by other configuration objects. The
name you choose should appropriately describe the object
you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters
as well as dashes, underscores, and periods only.

Counter Name This drop-down will present a list of all previously defined
Counter objects. Note that Counter objects are
automatically derived any time a new InitializeCounter
action object is executed.

Any drop-down list entry.

Decrement Value This value represents the value that will be subtracted
from the counter when the DecrementCounter Action
object is executed.

Valid values include signed integer numbers
between –2,147,483,648 and 2,147,483,647.

Figure 54: The Decrement Counter Action object

50

4.4.26 InitDataAverager Action object

When executed, the InitDataAverager

Action object will create and initialize a new

object capable of maintaining an average of

an incoming sensor value. Data averager

objects can be used in conjunction with the

UpdateDataAverager Action object to

maintain either a running or a moving

average of a selected sensor data value. In

turn, the value of the data averager object

may be evaluated as part of a Rule object’s

conditional logic via the

SensorDataAveragerValue State object.

Data averager values may also be included

as fields in custom UserReport Report

objects.

The table below describes the available options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Source Stream Name This drop-down will present a list of all previously defined
Sensor Stream objects.

Any drop-down list entry.

Sensor Data Value This drop-down list will contain each of the data value
fields previously enabled for the selected Sensor Stream
object.

Any drop-down list entry.

Sample Count This value represents the number of samples to use as a
maximum when calculating the average. Note that prior to
reaching the full sample count an average of the "n"
samples currently available will be provided.

For moving averages this is a positive integer value
between 2 and 2500. For a running average this
value should be 0.

Figure 55: The Init Data Averager Action object

51

4.4.27 UpdateDataAverager Action object

When executed, the UpdateDataAverager

object will cause a new value to be averaged

into in an averager object previously created

via an InitDataAverager Action object. The

new value will be the latest available Sensor

Stream data value originally referenced in

the InitDataAverager object definition.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Data Averager Name This drop-down will present a list of all previously defined
Sensor Data Averager objects. Note that Sensor Data
Averager objects are automatically derived any time a
new "Initialize Data Averager" action object is executed.

Any drop-down list entry.

4.4.28 InitSensorDataCache Action object

When executed, the InitSensorDataCache

Action object will create and initialize a new

sensor data cache object. These cache

objects can be used in conjunction with the

UpdateSensorDataCache Action object to

maintain a running cache of a selected

sensor data value. In turn, Rule object

conditional logic can reference the

NumberOfCachedSamples State object to

conditionally execute its list of Action

objects. Sensor data cache values may also

be included as fields in custom UserReport

Report objects. Note also that this action

object may be re-executed at any time to

reset and clear the created cache object.

Figure 57: The Init Sensor Data Cache Action object

Figure 56: The Update Data Averager Action object

52

The table below describes the available options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Source Stream Name This drop-down will present a list of all previously defined
Sensor Stream objects.

Any drop-down list entry.

Sensor Data Value This drop-down list will contain each of the data value
fields previously enabled for the selected Sensor Stream
object.

Any drop-down list entry.

Cache Size This number represents the maximum number of values
the cash will hold it in given time. Note that data cache
objects operate as a circular cache with new cached values
overwriting the oldest cached values once the cache is full.

A numeric value between 2 and 1024.

4.4.29 UpdateSensorDataCache Action object

The UpdateSensorDataCache object will

take the latest received sensor data value

identified by the associated

InitSensorDataCache object and add it to

the cache buffer.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object entry

when cross-referenced by other configuration objects. The
name you choose should appropriately describe the object
you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters
as well as dashes, underscores, and periods only.

Data Cache Name This drop-down will present a list of all previously defined
Sensor Data Cache objects. Note that Sensor Data Cache
objects are automatically derived any time a new
InitSensorDataCache action object is created.

Any drop-down list entry.

Figure 58: The Update Sensor Data Cache Action object

53

4.4.30 SetGpioPinLow Action object

When executed, the SetGpioPinLow Action

object will set a GPIO pin that has been

enabled as an output pin in the SoftHub’s

System Options to “Low”.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in length
and may include alphanumeric characters as well as
dashes, underscores, and periods only.

GPIO Pin Id This drop-down lists the GPIO Output Pins that have been
previously enabled in the SoftHub's GPIOs System Options
configuration screen.

Any drop-down list entry.

4.4.31 SetGpioPinHigh Action object

When executed, the SetGpioPinHigh Action

object will set a GPIO pin that has been

enabled as an output pin in the SoftHub’s

System Options to “High”.

The table below describes the available

options and their valid value ranges.

Figure 36: The Set GPIO Pin Low Action object

Figure 60: The Set GPIO Pin High Action object

54

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in length
and may include alphanumeric characters as well as
dashes, underscores, and periods only.

GPIO Pin Id This drop-down lists the GPIO Output Pins that have been
previously enabled in the SoftHub's GPIOs System Options
configuration screen.

Any drop-down list entry.

4.4.32 ToggleGpioPin Action object

When executed, the ToggleGpioPin Action

object will set a GPIO pin that has been

enabled as an output pin in the SoftHub’s

System Options to its inverted state.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in length
and may include alphanumeric characters as well as
dashes, underscores, and periods only.

GPIO Pin Id This drop-down lists the GPIO Output Pins that have been
previously enabled in the SoftHub's GPIOs System Options
configuration screen.

Any drop-down list entry.

Figure 61: The Toggle GPIO Pin Action object

55

4.4.33 ExecSysCommand Action object

When executed, the ExecSysCommand

Action object will initiate the execution of a

command on the system in the background.

Multiple commands may be initiated at

once and may be specified to run

concurrently or consecutively. These objects

should be used with great care as they will

be executed with the system's highest

privilege/authority level (i.e. "root" or

"Admin" depending on the platform). You

should carefully review the parameters

described below before incorporating these

objects in your configuration files.

The table below describes the available options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in length and
may include alphanumeric characters as well as dashes,
underscores, and periods only.

System Command This is the command to be executed. You can execute
any command as you would at a system line
command prompt. Special formatting may be
required based on the target platform.

On Linux systems the command, and each of its
parameters, must be enclosed in a separate pair of
double quotes (see the execv man page for details). An
example of a copy command would be all the following
characters between (but not including) the square
brackets ["/bin/cp" "/home/test/myfile"
"/home/test/myfile.sav"].

Execution Group The execution group allows commands to be run
either concurrently or consecutively. Commands in
group 0 will always be executed immediately
regardless of whether earlier executed commands
have completed or not. Commands in groups 1
through 5 will be queued into individual queues and
will be executed consecutively within their queue on
a first in first out basis. For instance, if you wanted to
play a series of sound files you could queue them into
queue 1 to ensure that only one would ever be
played at the time.

Any drop-down list entry.

Max Runtime (ms) This is the maximum runtime in milliseconds a
command can be run before being killed. Once the
runtime has been exceeded a soft-kill (sigterm) will
be issued, if the command has not terminated in the
following 5 seconds a hard-kill (sigkill) will be sent.
Note that when the SoftHub shuts down it will
attempt to terminate any outstanding commands still
running as well.

Any positive number between 0 and
9,223,372,036,854,775,807. A max runtime of 0
essentially sets no time limit on execution.

Figure 62: The Execute System Command Action object

56

4.4.34 EnableHubAction Action object

When executed, the EnableHubAction

Action object will enable a previously

defined Action object. When disabled, an

Action object will no longer be executed

regardless of whether a refering Rule

object’s conditional logic is satisfied or not.

Note that all action objects are enabled by

default until explicitly disabled by either a

DisableHubAction or ToggleHubAction

Action object.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object entry

when cross-referenced by other configuration objects. The
name you choose should appropriately describe the object
you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters
as well as dashes, underscores, and periods only.

Hub Action Name This drop-down will present a list of all previously defined
Action objects excluding the EnableHubAction,
DisableHubAction, and ToggleHubAction Action objects
themselves.

Any drop-down list entry.

4.4.35 EnableHubEvent Action object

When executed, the EnableHubEvent Action

object will enable a previously defined Event

object. When disabled, Event objects will

still be queued into the rule engine’s event

queue but will be immediately discarded

when received (an no associated Rule

objects will be evaluated). Note that all

event objects are enabled by default until

explicitly disabled by either a

DisableHubEvent or ToggleHubEvent Action

object.

The table below describes the available

options and their valid value ranges.

Figure 63: The Enable Hub Action Action object

Figure 64: The Enable Hub Event Action object

57

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in length
and may include alphanumeric characters as well as
dashes, underscores, and periods only.

Hub Event Name This drop-down will present a list of all previously defined
Event objects.

Any drop-down list entry.

4.4.36 EnableHubRule Action object

When executed, the EnableHubRule Action

object will enable a previously defined Rule

object. When disabled, a Rule object will no

longer be evaluated/executed when any

associated Event object is received by the

rule engine. Note that all rule objects are

enabled by default until explicitly disabled

by either a DisableHubRule or

ToggleHubRule Action object.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in length
and may include alphanumeric characters as well as
dashes, underscores, and periods only.

Hub Rule Name This drop-down will present a list of all previously defined
Rule objects.

Any drop-down list entry.

Figure 65: The Enable Hub Rule Action object

58

4.4.37 DisableHubAction Action object

When executed, the DisableHubAction

Action object disable a previously defined

Action object. When disabled, an Action

object will no longer be executed regardless

of whether a refering Rule object’s

conditional logic is satisfied or not. Note

that all action objects are enabled by default

until explicitly disabled by either a

DisableHubAction or ToggleHubAction

Action object.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in length
and may include alphanumeric characters as well as
dashes, underscores, and periods only.

Hub Action Name This drop-down will present a list of all previously defined
Action objects excluding the EnableHubAction,
DisableHubAction, and ToggleHubAction Action objects
themselves.

Any drop-down list entry.

4.4.38 DisableHubEvent Action object

When executed, the DisableHubEvent

Action object will disable a previously

defined Event object. When disabled, Event

objects will still be queued into the rule

engine’s event queue but will be

immediately discarded when received (an

no associated Rule objects will be

evaluated). Note that all event objects are

enabled by default until explicitly disabled

by either a DisableHubEvent or

ToggleHubEvent Action object.

The table below describes the available

options and their valid value ranges.

Figure 66: The Disable Hub Action Action object

Figure 67: The Disable Hub Event Action object

59

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in length
and may include alphanumeric characters as well as
dashes, underscores, and periods only.

Hub Event Name This drop-down will present a list of all previously defined
Event objects.

Any drop-down list entry.

4.4.39 DisableHubRule Action object

When executed, the DisableHubRule Action

object will disable a previously defined Rule

object. When disabled, a Rule object will no

longer be evaluated/executed when any

associated Event object is received by the

rule engine. Note that all rule objects are

enabled by default until explicitly disabled

by either a DisableHubRule or

ToggleHubRule Action object.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in length
and may include alphanumeric characters as well as
dashes, underscores, and periods only.

Hub Rule Name This drop-down will present a list of all previously defined
Rule objects.

Any drop-down list entry.

Figure 68: The Disable Hub Rule Action object

60

4.4.40 ToggleHubAction Action object

When executed, the ToggleHubAction

Action object will toggle the

enabled/disabled state of a previously

defined Action object. When disabled, an

Action object will no longer be executed

regardless of whether a refering Rule

object’s conditional logic is satisfied or not.

Note that all action objects are enabled by

default until explicitly disabled by either a

DisableHubAction or ToggleHubAction

Action object.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object entry

when cross-referenced by other configuration objects. The
name you choose should appropriately describe the object
you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters
as well as dashes, underscores, and periods only.

Hub Action Name This drop-down will present a list of all previously defined
Action objects excluding the EnableHubAction,
DisableHubAction, and ToggleHubAction Action objects
themselves.

Any drop-down list entry.

Figure 69: The Toggle Hub Action Action object

61

4.4.41 ToggleHubEvent Action object

When executed, the ToggleHubEvent Action

object will toggle the enabled/disabled state

of a previously defined Event object. When

disabled, Event objects will still be queued

into the rule engine’s event queue but will

be immediately discarded when received

(an no associated Rule objects will be

evaluated). Note that all event objects are

enabled by default until explicitly disabled

by either a DisableHubEvent or

ToggleHubEvent Action object.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in length
and may include alphanumeric characters as well as
dashes, underscores, and periods only.

Hub Event Name This drop-down will present a list of all previously defined
Event objects.

Any drop-down list entry.

4.4.42 ToggleHubRule Action object

When executed, the ToggleHubRule Action

object will toggle the enabled/disabled state

of a previously defined Rule object. When

disabled, a Rule object will no longer be

evaluated/executed when any associated

Event object is received by the rule engine.

Note that all rule objects are enabled by

default until explicitly disabled by either a

DisableHubRule or ToggleHubRule Action

object.

The table below describes the available

options and their valid value ranges.

Figure 70: The Toggle Hub Event Action object

Figure 71: The Toggle Hub Rule Action object

62

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in length
and may include alphanumeric characters as well as
dashes, underscores, and periods only.

Hub Rule Name This drop-down will present a list of all previously defined
Rule objects.

Any drop-down list entry.

4.4.43 SoftHubStop Action object

When executed, the SoftHubStop Action

object will terminate the SoftHub

application. Note once shutdown the

SoftHub application will need to be

manually restarted to resume operation.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in length
and may include alphanumeric characters as well as
dashes, underscores, and periods only.

Figure 72: The SoftHub Stop Action object

63

4.5 State Objects

This section will detail the individual State Objects currently supported by the SoftHub application. State

objects are used to place conditional logic on the execution of individual Rule objects. When

evaluated/executed, a State object will resolve to a logical "true" or "false" based on some current state

within the SoftHub application. Examples would include whether a specific sensor value exceeds a user

defined threshold or whether an input GPIO pin is currently "high". When defining the Rule objects

themselves you will have the option to build complex Boolean logic statements comprised of one or

more State objects to be evaluated. Boolean logic statements can be built using logical AND, OR, and

NOT statements as well parenthesis to alter logical precedent.

4.5.01 SensorConnected State object

When evaluated, the SensorConnected State

object will determine if the specified Sensor

Stream object is currently connected to the

SoftHub application. Note that there may

be some lag when a connection is lost

before the hardware reports the connection

as permanently disconnected.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Sensor Stream Name This drop-down list will contain all of the previously
defined Sensor Streams objects. The value of this state
object will evaluate to true if the selected Source Stream
object has been successfully connected to the system.

Any drop-down list entry.

Figure 73: The Sensor Connected State object

64

4.5.02 SensorDataValue State object

When evaluated, the SensorDataValue State

object will test the last received specified

sensor value against a user defined

threshold. Note that if the sensor has not

yet connected or if it is connected but has

not yet reported a packet, the value of this

State object will be returned as indicated by

the user specified “Default Result”.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Sensor Stream Name This drop-down list will contain each of the previously
defined Sensor Streams objects. Select the Sensor Stream
object that contains the data value that you wish to
compare against.

Any drop-down list entry.

Sensor Data Value This drop-down list will contain each of the data value
fields previously enabled for the selected Sensor Stream
object. Select the data value field you wish to compare
against.

Any drop-down list entry.

Compare Type In this drop-down are a list of valid compare types for the
data type being compared against. Select the compare
type to be made between the sensor's current data value
and the specified compare value (EQ, NEQ, GT, NGT, LT,
NLT).

Any drop-down list entry.

Compare Value This is the value you wish to compare against the selected
data item's current value.

Note that the valid range for this value will be type
dependent. For example if the data type is a 16 bit
unsigned integer the valid range will a numeric
between 0 and 65,535.

Sensor Data TTL/ms This value provides a time limit (in milliseconds) on the
sensor data being tested against. If the sensor data is
older than the time to live specified, the user selected
default result will be returned. Note that a value of “0”
indicates that the sensor value never expires.

A value between 0 to 4,294,967,295.

Default Result This dropdown allows the user to select the default
compare result to be returned when either the sensor
data is unavailable or has expired per the value entered
in the “Sensor Data TTL/ms” textbox.

Any drop-down list entry.

Figure 74: The Sensor Data Value State object

65

4.5.03 SensorDataAveragerValue State object

The SensorDataAveragerValue State object

will compare the value currently available

from the named averager object against a

user defined threshold value.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object entry

when cross-referenced by other configuration objects. The
name you choose should appropriately describe the object
you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters
as well as dashes, underscores, and periods only.

Data Averager Name This drop-down will list each of the previously defined Data
Averager objects. Note that Data Averager objects are
automatically derived any time a new InitDataAverager
Action object is executed.

Any drop-down list entry.

Compare Type In this drop-down you will find a list of logical compare
type operators for comparing the counter's current value
against the specified compare value (EQ, NEQ, GT, NGT, LT,
NLT).

Any drop-down list entry.

Compare Value This is the value you wish to compare against the selected
counter object's current value.

This value must be a valid signed or unsigned
floating point number.

Figure 75: The Sensor Data Averager Value State object

66

4.5.04 NumCachedSamplesValue State object

The NumCachedSamplesValue State object

will compare the number of cached samples

available in the specified cache object

against the user specified threshold value.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Cache Name This drop-down will list each of the previously defined
Sensor Data Cache objects. Note that Sensor Data Cache
objects are automatically derived any time a new
InitDataCache Action object is executed.

Any drop-down list entry.

Compare Type This is the type of logical compare that will be performed
between the actual number of cached samples and the
specified Compare Value (EQ, NEQ, GT, NGT, LT, NLT).

Any drop-down list entry.

Compare Value This is the value that will be compared against the actual
number of cached values in the selected data cache.

Valid compare values are numeric values between
0 and 1,024.

Figure 76: The Num Cached Samples Value State object

67

4.5.05 FlagState State object

When evaluated, the FlagState State object

will compare the value of the specified Flag

object against the test value provided by the

user.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Flag Name This drop-down will list each of the previously defined
Flag objects. Note that Flag objects are automatically
derived any time a new InitializeFlag Action object is
executed.

Any drop-down list entry.

Compare Value This is the value you wish to compare against the selected
flag object's current value.

Any drop-down list entry.

4.5.06 CounterValue State object

When evaluated, the CounterValue State

object will test the specified counter

objects’ current value against the user

specified threshold value.

The table below describes the available

options and their valid value ranges.

Figure 77: The Flag State State object

Figure 78: The Counter Value State object

68

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in length and
may include alphanumeric characters as well as dashes,
underscores, and periods only.

Counter Name This drop-down will list each of the previously defined
Counter objects. Note that Counter objects are
automatically derived any time a new InitializeCounter
Action object is executed.

Any drop-down list entry.

Compare Type This is the type of logical compare that will be
performed between the actual counter value and the
specified Compare Value (EQ, NEQ, GT, NGT, LT, NLT).

Any drop-down list entry.

Compare Value This is the value you wish to compare against the
selected counter object's current value.

This value must be a number between –
9,223,372,036,854,775,808 and
9,223,372,036,854,775,807.

4.5.07 GpioPinState State object

When evaluated, the GpioPinState State

object will test the specified GpioPinState

against the user defined compare value.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

GPIO Pin Id This drop-down lists the GPIO Input Pins that have
previously been enabled in the System Options
configuration screen.

Any drop-down list entry.

Compare Value This is the value that will be compared against the
selected GPIO pin's current value. The state object will
evaluate to true if the compare value matches the GPIO
pen's actual value, otherwise the state object will
evaluate to false.

Any drop-down list entry.

Figure 79: The GPIO Pin State State object

69

4.5.08 TimeOfDay State object

When evaluated, the TimeOfDay State

object will test the current time of day

against the user specified compare value.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Compare Type This is the type of logical compare that will be performed
between the actual time of day and the specified
compare value (EQ, NEQ, GT, NGT, LT, NLT).

Any drop-down list entry.

Time Of Day This is the value you wish to compare against the actual
current time of day.

Valid values must be specified in the 24 hour
format of "HH:MM:SS" (e.g. "14:05:00" for 2:05
PM).

Figure 80: The Time Of The Day State object

70

4.5.09 DayOfTheWeek State object

When evaluated, the DayOfTheWeek State

object will test the current day of the week

against the user specified compare value.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Compare Type This is the type of logical compare that will be performed
between the actual day of the week and the specified
compare value (EQ, NEQ, GT, NGT, LT, NLT).

Any drop-down list entry.

Day of the Week This is a drop-down of day of the week values you wish to
compare against the actual current day of the week.

Any drop-down list entry.

Figure 81: The Day Of The Week State object

71

4.5.10 DayOfTheMonth State object

When evaluated, the DayOfTheMonth State

object will test the current day of the month

against the user specified compare value.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Compare Type This is the type of logical compare that will be performed
between the actual day of the month and the specified
compare value (EQ, NEQ, GT, NGT, LT, NLT).

Any drop-down list entry.

Day of the Month This is a drop-down of day of the month values you wish
to compare against the actual current day of the month.

Any drop-down list entry.

Figure 82: The Day Of The Month State object

72

4.5.11 CurrentMonth State object

When evaluated, the CurrentMonth State

object will test the current month against

the user specified compare value.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Compare Type This is the type of logical compare that will be performed
between the actual current month and the specified
compare value (EQ, NEQ, GT, NGT, LT, NLT).

Any drop-down list entry.

Compare Month In this drop-down you can select the month value you
wish to test the current month value against.

Any drop-down list entry.

Figure 83: The Current Month State object

73

4.5.12 CurrentYear State object

When evaluated, the CurrentYear State

object will test the current year against the

user specified compare value.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Compare Type This is the type of logical compare that will be performed
between the actual current year and the specified
compare value (EQ, NEQ, GT, NGT, LT, NLT).

Any drop-down list entry.

Compare Year This is the value you wish to compare against the actual
current year.

Valid values are numeric values between 2016 and
9999.

Figure 84: The Current Year State object

74

4.6 Rule Objects

Rule Objects ultimately control all aspects to the SoftHub behavior. Each Rule object is associated with a

single Event object (though an Event object may be associated with multiple Rule objects). As events are

detected by the various SoftHub application components, a corresponding "Event Object" is put into the

rule engine's event queue. As the rule engine receives these events, it will check to see if the user has

defined any rules to be evaluated for the corresponding event. If so, each rule found will be sequentially

evaluated in the order listed by the user when building the configuration file.

"Evaluating" an individual rule consists of two steps, (1) evaluating any optional conditional logic the

user has defined and, (2) if the conditionals are met (or there are none defined), executing the list of

one or more associated Action objects (again, in the order as defined by the user).

4.6.01 UserRule Rule object (Main)

As noted above building a Rule object

consists of two steps. To add any optional

conditional logic, click the "Edit" button to

the right of the “State Check” text-box to

enter the State Check dialog screen. Once

you are satisfied with your conditional logic,

click the "Add" button next to the

"Triggered Actions" list-box to build a list of

Action objects to be executed when the

rule’s conditional logic has been satisfied. As

you add Action Objects to the list-box you

can use the "Up", "Down", and "Delete"

buttons to ensure that the selected Action

objects are executed in the proper order.

The table below describes the available options and their valid value ranges.

Field Name Description Valid Values
Name This is the name by which you will refer to this object

entry when cross-referenced by other configuration
objects. The name you choose should appropriately
describe the object you are creating.

Names may be between 4 to 40 characters in
length and may include alphanumeric characters as
well as dashes, underscores, and periods only.

Triggering Event This text-box will identify the Event object which will
trigger the evaluation of the Rule object being created.
Note that his textbox is un-editable.

N/A

Figure 85: The User Rule Specification Rule object

75

State Check Using this edit box you can optionally create complex
Boolean logic statements to be evaluated to conditionally
execute the rule object’s Action object list. At run time, if
the evaluation of the resulting logic statement resolves to
true, the rule’s Action objects will be executed. If the
resulting logic statement resolves to false, no further
processing of the current rule is undertaken. Use the
"Edit" button to enter your Boolean logic statements in
the separate State Check definition screen.

N/A

Triggered Actions In this edit box you can add, edit, and arrange the action
objects you wish the rule to execute. Clicking the Add
button will open a separate Triggered Actions definition
screen to select your action objects. You can then use the
Delete, Up, and Down buttons to set the order in which
the actions are to be performed.

N/A

4.6.02 UserRule Rule object (State Check)

The State Check screen is used to create any

optional conditional logic to be evaluated

each time the associated rule is triggered. If

when evaluated the logic statement

resolves to "true" then the Rule object's

Action object list will be executed. If

however the logic statement resolves to

"false" then the Rule object being evaluated

will not be further processed. Note that the

buttons to the right can be used to logically

connect one or more State objects to create

more complex conditional logic.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values

State This drop-down contains a list of all state objects defined in
the current rule set. Use this dropdown to add one or more
State Objects to your conditional logic statement.

Any drop-down list entry

State Check Use the state check edit box and the edit buttons to the
right of the list-box to edit and build your logical conditional
statement as required.

N/A

Figure 86: The Rule Object State Check dialog

76

4.6.03 UserRule Rule object (Triggered Actions)

The Triggered Actions screen allows the user

to build a list of one or more Action objects

to be executed when the associated rule has

been triggered and any optional state logic

has been successfully evaluated. To select

one or more Action Objects, multiselect the

entry(s) and click the Save button. Note that

the order in which the actions are executed

can be altered in the Rule object's main

screen.

The table below describes the available

options and their valid value ranges.

Field Name Description Valid Values

Triggered Actions In this edit box you will see a list of all the currently defined
action objects for the current rule set. Select action objects
to be added to the rule object by highlighting the and
clicking the save button.

Any drop-down list entry (multi-select)

Figure 87: The Rule Object Triggered Actions dialog

77

5. Example Rulesets

This section presents five simplistic example scenarios used to illustrate some of the more common

SoftHub functionality. Each example will provide a brief functional summary followed by an in-detail

description of each of the actual objects used to implement the scenario ruleset. At the end of each

example is a table that describes the presented ruleset as a series of When/If/Do statements. When

creating your own rulesets these types of tables should be used as a starting point to map out the

objects that will be required.

Note that for continuity individual object definitions are presented in the order listed in each scenario’s

configuration object tree (i.e. alphabetically). Since objects will often cross reference each other there

will be instances in the object descriptions where, if created in the specific order listed, would not yet

exist. In particular all Rule objects themselves, while presented first, are in practice generally created

last.

Also note that for all scenario’s presented it is assumed

that the Hub System Options setting Auto Start All

Sensors has been enabled (set to “Y”). For simplicity, it is

assumed that the sensors used in the example will

remain connected at all times. Failure to change this

setting will make any of the examples non-operational.

Figure 88: The Auto Start All Sensors system setting

78

5.1 Simple Data Forwarding

Example 1 presents a simple, though very common, configuration file to implement the following:

 On application startup it will implicitly connect to two sensors (via the Auto Start All Sensors

System Option), (1) an ANT Garmin Tempe sensor, and (2) a BLE TI SensorTag sensor.

 Once connected, every packet received from either sensor will be forwarded to a remote packet

capture server.

Figure 89 illustrates the object tree view of the ruleset used to implement this scenario. Briefly, the

objects and the purpose of each are also summarized. The following sections will then describe each

object and its settings in detail.

Sensor Stream objects:

 antTempe – Identifies the ANT sensor to connect

to.

 bleSensorTag – Identifies the BLE sensor to

connect to.

Action objects:

 doSendAntPacket – This SendData Action object

will send the most recent packet from its

associated Sensor Stream object (antTemp) to a

user specified remote packet capture server.

 doSendBlePacket – This SendData Action object

will send the most recent packet from its

associated Sensor Stream object (bleSensorTag)

to a user specified remote packet capture server.

Event objects:

 00-onNewAntPacket – This NewSensorPacket

Event object will be queued every time a new

packet is received from its associated Sensor

Stream object (antTempe).

 01-onNewBlePacket – This NewSensorPacket Event object will be queued every time a new

packet is received from its associated Sensor Stream object (bleSensorTag).

Rule objects:

 00-doSendAntPacket – This Rule object will be evaluated every time its associated Event object

(00-onNewAntPacket) is queued.

 00-doSendBlePacket – This Rule object will be evaluated every time its associated Event object

(01-onNewBlePacket) is queued.

Figure 89: Example 1 configuration object tree

79

Full Rule object definition(s):

Figure 90 shows the full definition of the

00-doSendAntPacket Rule object. It will be evaluated

every time its triggering Event object,

00-onNewAntPacket, gets read from the rule engine’s

event queue. It has no conditional State Check logic to

evaluate so its Action object(s) will always be executed.

When executed its single Action object,

doSendAntPacket, will send the most recently received

packet from the ANT Tempe sensor to a user specified

remote packet capture server.

Figure 91 shows the full definition of the

00-doSendBlePacket Rule object. It will be evaluated

every time its triggering Event object,

01-onNewBlePacket, gets read from the rule engine’s

event queue. It has no conditional State Check logic to

evaluate so its Action object(s) will always be executed.

When executed its single Action object,

doSendBlePacket, will send the most recently received

packet from the BLE SensorTag sensor to a user specified

remote packet capture server.

Figure 90: The 00-doSendAntPacket Rule object
definition

Figure 91: The 00-doSendBlePacket Rule object
definition

80

Full Sensor Stream object definition(s):

Figure 92 shows the full definition for the antTempe ANT

Sensor Stream object. From the dropdown of supported

ANT sensors a Sensor Type of “Ant Environment” was

selected (the ANT profile for the Garmin Tempe). No

specific Sensor ID was defined so that the SoftHub will

connect to the first Tempe sensor available. Lastly, when

originally creating the antTempe object a New Packet

Event Event object was specified, 00-OnNewAntPacket.

This instructs the SoftHub to queue the named event

every time a new packet is received from the Tempe

sensor that connects to the SoftHub via this specific

Sensor Stream definition.

Figure 93 shows the full definition for the bleSensorTag

BLE Sensor Stream object. From the dropdown of

supported BLE sensors a Sensor Type of “TI CC2650

SendorTag” was selected. No specific Sensor ID was

defined so that the SoftHub will connect to the first

SensorTag sensor available. Unlike ANT sensors which

will always send all sensor data available, BLE sensors

must have each sensor data value enabled individually.

For this example, only the data from the Light Intensity

sensor has been enabled from the list of values the

sensor supports. Note however that this is a multi-select

list-box and one or more values may be selected as

required.

Lastly, when originally creating the bleSensorTag object a

New Packet Event Event object was specified, 01-OnNewBlePacket. This instructs the SoftHub to queue

the named event every time a new packet is received from the SensorTag sensor that connects to the

SoftHub via this specific Sensor Stream definition.

Figure 92: The antTempe Sensor Stream object
definition

Figure 93: The bleSensorTag Sensor Stream object
definition

81

Full Action object definition(s):

Figure 94 shows the full definition for the

doSendAntPacket SendData Action object. When

executed this object will send the latest packet data from

the chosen Sensor Stream to the user specified IP and

port address over a TLS encrypted connection.

When defining a SendData object, the Source Stream

Name dropdown will provide a list of all Sensor Streams

the user has previously defined. For this object the

antTempe Sensor Stream object was selected. The

Destination IP Address identifies the IP address of a

remote packet capture server to forward the packets to

(typically a server running the OmnIoT Packet Capture

Service). The Destination Port identifies what port the

packet capture service has been configured to listen on.

Figure 95 shows the full definition for the

doSendBlePacket SendData Action object. When

executed this object will send the latest packet data from

the chosen Sensor Stream to the user specified IP and

port address over a TLS encrypted connection.

When defining a SendData object, the Source Stream

Name dropdown will provide a list of all Sensor Streams

the user has previously defined. For this object the

bleSensorTag Sensor Stream object was selected. The

Destination IP Address identifies the IP address of a

remote packet capture server to forward the packets to

(typically a server running the OmnIoT Packet Capture

Service). The Destination Port identifies what port the

packet capture service has been configured to listen on.

Figure 94: The doSendAntPacket Action object
definition

Figure 95: The doSendBlePacket Action object
definition

82

Example Summary:

Example 1 portrayed one of the simplest, yet most common, IoT application scenarios. SoftHub rulesets

can be thought of as a series of when/if/do statements (i.e. WHEN some event occurs, IF some

conditions are met, DO some action(s)). The table below provides a summary of how the SoftHub’s rule

engine will process the ruleset described in example 1:

Event (When) Rule State (If) Action (Do)
00-onNewAntPacket: A new
packet has been received from
the connected Tempe sensor.

00-doSendAntPacket N/A, Do always doSendAntPacket: Send the most recent
Tempe packet to a remote packet capture
server.

01-onNewBlePacket: A new
packet has been received from
the connected SensorTag sensor.

00-doSendBlePacket N/A, Do always doSendBlePacket: Send the most recent
SensorTag packet to a remote packet
capture server.

83

5.2 Timers and Conditionals

Example 2 illustrates a variation on example 1 and introduces Timer objects as well as State objects to

conditionally control the execution of Rule objects. Example 2’s configuration file will do the following:

 On application startup it will connect to two sensors (via the Auto Start All Sensors System

Option), (1) an ANT Garmin Tempe sensor, and (2) a BLE TI SensorTag sensor.

 Also on startup it will create and start a Continuous Timer object which will emit Timer Expired

events every 30 seconds.

 During the hours of 9 AM and 5PM, every time the timer expired event occurs (i.e. every 30

seconds) the most recent packet received from each of the connected sensors will be forwarded

to a remote packet capture server.

Figure 96 depicts the object tree view of the ruleset used to implement this scenario. Briefly, the

objects and the purpose of each are also summarized. The following sections will then describe each

object and its settings in further detail.

Sensor Stream objects:

 antTempe – Identifies the ANT sensor to connect

to.

 bleSensorTag – Identifies the BLE sensor to

connect to.

State objects:

 isAfter9AM – This TimeOfDay State object will

be true when executed if the current time of day

is after 9 AM.

 isBefore5PM – This TimeOfDay State object will

be true when executed if the current time of day

is before 5 PM.

Action objects:

 doSendAntPacket – This SendData Action object

will send the most recent packet from its

associated Sensor Stream object (antTemp) to a

user specified remote packet capture server.

 doSendBlePacket – This SendData Action object

will send the most recent packet from its

associated Sensor Stream object (bleSensorTag)

to a user specified remote packet capture server.

 doStartReportTimer – This StartContinuousTimer Action object will create and start a

continuously repeating timer that will expire every 30 seconds.

Figure 96: Example 2 configuration object tree

84

Event objects:

 00-onSoftHubStartup – When the SoftHub application starts, this AppStarting Event object will

be queued as the first event object to be processed by the rule engine.

 01-onReportTimerExpires – This TimerExpired Event object will be queued every 30 seconds as

its associated timer object, created via the doStartReportTimer Action object, expires.

Rule objects:

 00-doStartReportTimer – This Rule object will be evaluated every time its associated Event

object (00-onSoftHubStartup) is queued.

 00-doSendLastPackets – This Rule object will be evaluated every time its associated Event

object (01-onReportTimerExpires) is queued.

85

Full Rule object definition(s):

Figure 97 shows the full definition of the

00-doStartReportTimer Rule object. It will be evaluated

before any other rule when the initial

00-onSoftHubStartup (AppStarting) Event object gets

queued. It has no conditional State Check logic to

evaluate so its Action object(s) will always be executed.

When executed its single Action object,

doStartReportTimer, will create and start a continuous

report timer which will generate and queue an

00-onReportTimerExpires (TimerExpired) Event object

each time it expires (every 30 seconds).

Figure 98 shows the full definition of the

00-doSendLastPackets Rule object. This rule will be

evaluated every time the 01-onReportTimerExpires

(TimerExired) Event object is queued. This rule has State

Check conditional logic associated with it which will be

evaluated prior to any Action objects being executed. In

this case the two State objects (isAfter9AM and

isBefore5PM) will be executed and their return values

logically AND’ed together. Only if the result of the logical

expression is true will the rule’s two action objects be

executed.

As in the previous example, the two Action objects,

doSendAntPacket and doSendBlePacket, will send the last

received packets from their associated Sensor Stream

objects to a remote packet capture server.

Figure 97: The 00-doStartReportTimer Rule object
definition

Figure 98: The 00-doSendLastPackets Rule object
definition

86

Full Sensor Stream object definition(s):

Figure 99 shows the full definition for the antTempe ANT

Sensor Stream object. From the dropdown of supported

ANT sensors a Sensor Type of “Ant Environment” was

selected (the ANT profile for the Garmin Tempe). No

specific Sensor ID was defined so that the SoftHub will

connect to the first Tempe sensor available. Note that

unlike the previous example the New Packet Event dialog

box has been left blank as we do not require new packet

event notifications for this scenario.

Figure 100 shows the full definition for the bleSensorTag

BLE Sensor Stream object. From the dropdown of

supported BLE sensors a Sensor Type of “TI CC2650

SendorTag” was selected. No specific Sensor ID was

defined so that the SoftHub will connect to the first

SensorTag sensor available. Unlike ANT sensors which

will always send all sensor data available, BLE sensors

must generally have supported sensor data values

enabled individually. For this example, only the data

from the Light Intensity sensor has been enabled from

the list of values the sensor supports. Note that this is a

multi-select list-box and one or more values may be

selected as required. Also note that unlike the example 1,

the New Packet Event dialog box has been left blank as

we do not require new packet event notifications for this scenario.

Figure 99: The antTempe Sensor Stream object
definition

Figure 100: The bleSensorTag Sensor Stream object
definition

87

Full State object definition(s):

Figure 101 shows the full definition for the isAfter9AM

TimeOfDay State object. When executed this object will

return a value of either true or false. As defined in the

example, if the current time of day is greater than or

equal to (GTE) the user specified value in the Time of Day

dialog box then this State object will be true, otherwise it

will be false.

Figure 102 shows the full definition for the isBefore5PM

TimeOfDay State object. When executed this object will

return a value of either true or false. As defined in the

example, if the current time of day is less than or equal

to (LTE) the user specified value in the Time of Day dialog

box then this State object will be true, otherwise it will

be false.

Figure 101: The isAfter9AM State object definition

Figure 102: The isBefore5PM State object definition

88

Full Action object definition(s):

Figure 103 shows the full definition for the

doSendAntPacket SendData Action object. When

executed this object will transmit the latest packet data

from the chosen Sensor Stream to the user specified IP

and port address over a TLS encrypted connection.

When defining a SendData object, the Source Stream

Name dropdown will provide a list of all Sensor Streams

the user has previously defined. For this object the

antTempe Sensor Stream object was selected. The

Destination IP Address identifies the IP address of a

remote packet capture server to forward the packets to

(typically a server running the OmnIoT Packet Capture

Service). The Destination Port identifies what port the

packet capture service has been configured to listen on.

Figure 104 shows the full definition for the

doSendBlePacket SendData Action object. When

executed this object will send the latest packet data from

the chosen Sensor Stream to the user specified IP and

port address over a TLS encrypted connection.

When defining a SendData object, the Source Stream

Name dropdown will provide a list of all Sensor Streams

the user has previously defined. For this object the

bleSensorTag Sensor Stream object was selected. The

Destination IP Address identifies the IP address of a

remote packet capture server to forward the packets to

(typically a server running the OmnIoT Packet Capture

Service). The Destination Port identifies what port the

packet capture service has been configured to listen on.

Figure 104: The doSendBlePacket Action object
definition

Figure 103: The doSendAntPacket Action object
definition

89

Figure 105 shows the full definition for the

doStartReportTimer StartContinuousTimer Action object.

When executed this object will create and start a new

continuous timer object. Continuous timer objects will

continually restart themselves on expiration. For this

example the Timer Duration has been set to 30000

millseconds (i.e 30 seconds). The Timer Expired Event

dialog box defines the optional TimerExpired object to be

queued each time the timer expires. Here, every 30

seconds an 01-onReportTimerExpires TimerExpired

object will be put to the rule engine’s event queue.

Example Summary:

Example 1 portrayed one of the simplest, yet most common, IoT application scenarios. Example 2

introduces Timer Events and Rule object conditionals (State objects). SoftHub rulesets can be thought of

as a series of when/if/do statements (i.e. WHEN some event occurs, IF some conditions are met, DO

some action(s)). The table below provides a summary of how the SoftHub’s rule engine will process the

ruleset described in Example 2:

Event (When) Rule State (If) Action (Do)
00-onSoftHubStartup: The
SoftHub is initially starting
up.

00-doStartReportTimer N/A, Do always doStartReportTimer: Create and start a
continuous timer object set to expire
every 30 seconds.

00-onReportTimerExpires:
A timer expired event
object has been queued by
the report timer.

00-doSendLastPackets Do only if the
isAfter9AM AND
isBefore5PM State
objects are both
true.

doSendAntPacket: Send the most recent
Tempe packet to a remote packet capture
server.

As above As above As above doSendBlePacket: Send the most recent
SensorTag packet to a remote packet
capture server.

Figure 37: The doStartReportTimer Action object
definition

90

5.3 Email and SMS Alerts

Example 3 extends the functionality of example 1 and introduces threshold based alarms and the

SendEmail Action object. Example 3’s configuration file will do the following (new functionality is noted

in italics):

 On application startup it will implicitly connect to two sensors (via the Auto Start All Sensors

System Option), (1) an ANT Garmin Tempe sensor, and (2) a BLE TI SensorTag sensor.

 Once connected, every packet received from either sensor will be forwarded to a remote packet

capture server.

 At any time, if the SensorTag light sensor data indicates that the lights are “off” (i.e. below our

threshold value) an alert email will be sent.

 Once triggered, additional email alerts will be disabled for the following 15 minutes.

91

Figure 106 illustrates the object tree view of the ruleset used to implement this scenario. Briefly, the

objects and the purpose of each are also summarized. The following sections will then describe each

object and its specific settings in further detail.

Sensor Stream objects:

 antTempe – Identifies the ANT sensor to connect

to.

 bleSensorTag – Identifies the BLE sensor to

connect to.

State objects:

 isLightTooLow – This SensorDataValue State

object checks the light value from the

bleSensorTag Sensor Stream against a user

defined threshold.

Action objects:

 doDisableBadLightCheck – This DisableHubRule

Action object will temporarily disable the 01-

doCheckBadLight Rule object from being

evaluated.

 doEnableBadLightCheck – This EnableHubRule

Action object will Reenable the

01-doCheckBadLight Rule object for evaluation.

 doSendAntPacket – This SendData Action object

will send the most recent packet from its

associated Sensor Stream object (antTemp) to a

user specified remote packet capture server.

 doSendBlePacket – This SendData Action object

will send the most recent packet from its

associated Sensor Stream object (bleSensorTag)

to a user specified remote packet capture server.

 doSendEmail – This SendEmail Action object will send an customized email to one or more

recipients when the isLightTooLow evaluates to true.

 doStartReEnableTimer – This StartOneShotTimer Action object will start a 15 minute timer to

reenable the sending of alarm emails.

Event objects:

 00-onNewAntPacket – This NewSensorPacket Event object will be queued every time a new

packet is received from its associated Sensor Stream objects (antTempe).

 01-onNewBlePacket – This NewSensorPacket Event object will be queued every time a new

packet is received from its associated Sensor Stream objects (bleSensorTag).

Figure 38: Example 3 configuration object tree

92

 05-onReEnableTimerExpired – This TimerExpired Event object will be queued every time its

associated Timer object expires.

Rule objects:

 00-doSendAntPacket – This Rule object will be evaluated every time its associated Event object

(00-onNewAntPacket) is queued.

 00-doSendBlePacket – This Rule object will be evaluated every time its associated Event object

(01-onNewBlePacket) is queued.

 01-doCheckBadLight – This Rule object will be evaluated every time its associated Event object

(01-onNewBlePacket) is queued. It has conditional logic indicating its Action objects should only

be executed when the sensor data’s light level value goes below a defined threshold.

 00-doReEnableLightCheck – This Rule object will be evaluated every time its associated Event

object (00-onReEnableTimerExpired) is queued. Its single Action object will reenable the

01-doCheckBadLight Rule object.

93

Full Rule object definition(s):

Figure 107 shows the full definition of the

00-doSendAntPacket Rule object. It will be evaluated

every time its triggering Event object,

00-onNewAntPacket, gets read from the rule engine’s

event queue. It has no conditional State Check logic to

evaluate so its Action object(s) will always be executed.

When executed its single Action object,

doSendAntPacket, will send the most recently received

packet from the ANT Tempe sensor to a user specified

remote packet capture server.

Figure 108 shows the full definition of the

00-doSendBlePacket Rule object. It will be evaluated

every time its triggering Event object,

01-onNewBlePacket, gets read from the rule engine’s

event queue. It has no conditional State Check logic to

evaluate so its Action object(s) will always be executed.

When executed its single Action object,

doSendBlePacket, will send the most recently received

packet from the BLE SensorTag sensor to a user specified

remote packet capture server.

Figure 40: The 00-doSendBlePacket Rule object
definition

Figure 39: The 00-doSendAntPacket Rule object
definition

94

Figure 109 shows the full definition of the

00-doCheckBadLight Rule object. It will be evaluated

every time its triggering Event object,

01-onNewBlePacket, gets read from the rule engine’s

event queue. It will be evaluated after the 00-

doSendBlePacket Rule object has fully completed. It has

a single conditional State object, isLightTooLow, which

when true will cause its three Action objects to be

executed. These objects will (1) send an alarm email, (2)

temporarily disable the 00-doCheckBadLight Rule object

itself, and (3) set a 20 minute timer to re-enable the

00-doCheckBadLight Rule object.

Figure 110 shows the full definition of the

00-doReEnableLightCheck Rule object. It will be

evaluated every time its triggering Event object,

00-onReEnableTimerExpired, gets read from the rule

engine’s event queue. This Rule object has no

conditionals so its single Action object will always be

executed. Its Action object will re-enable the

00-doCheckBadLight for evaluation and execution.

Figure 41: The 01-doCheckBadLight Rule object
definition

Figure 42: The 01-doReEnableLightCheck Rule object
definition

95

Full Sensor Stream object definition(s):

Figure 111 shows the full definition for the antTempe

ANT Sensor Stream object. From the dropdown of

supported ANT sensors a Sensor Type of “Ant

Environment” was selected (the ANT profile for the

Garmin Tempe). No specific Sensor ID was defined so

that the SoftHub will connect to the first Tempe sensor

available. Lastly, when originally creating the antTempe

object a New Packet Event Event object was specified,

00-OnNewAntPacket. This instructs the SoftHub to queue

the named event every time a new packet is received

from the Tempe sensor that connects to the SoftHub via

this Sensor Stream definition.

Figure 112 shows the full definition for the bleSensorTag

BLE Sensor Stream object. From the dropdown of

supported BLE sensors a Sensor Type of “TI CC2650

SendorTag” was selected. No specific Sensor ID was

defined so that the SoftHub will connect to the first

SensorTag sensor available. Unlike ANT sensors which

will always send all sensor data available, BLE sensors

must generally have supported sensor data values

enabled individually. For this example, only the data

from the Light Intensity sensor has been enabled from

the list of values the sensor supports. Note that this is a

multi-select list-box and one or more values may be

selected as required.

Lastly, when originally creating the bleSensorTag object a

New Packet Event Event object was specified, 01-OnNewBlePacket. This instructs the SoftHub to queue

the named event every time a new packet is received from the SensorTag sensor that connects to the

SoftHub via this Sensor Stream definition.

Figure 44: The bleSensorTag Sensor Stream object
definition

Figure 43: The antTempe Sensor Stream object
definition

96

Full State object definition(s):

Figure 113 shows the full definition for the

isLightTooLow SensorDataValue State object. When

executed this object will test the last received packet

value specified by the Source Stream Name and Sensor

Data Value per the user threshold criteria. In this

example the latest received value from the SensorTag’s

light sensor will be checked as being less than or equal to

(LTE) a threshold value of 2 (Lumens). If it is less than or

equal to 2 the lights will be considered “off” amd the

state object will evaluate to true. Otherwise it will

evaluate to false.

Full Action object definition(s):

Figure 114 shows the full definition for the

doDisableBadLightCheck DisableHubRule Action object.

When executed this Action object will mark the Rule

object specified in the Hub Rule Name dropdown as

disabled. This means that when the specified Rule

object’s triggering event occurs, the specified Rule object

will be skipped in the evaluation process. Any other rules

associated with the triggering event will not be affected.

A Rule object that has been disabled by a DisableHubRule

Action object will remain disabled until a corresponding

EnableHubRule Action object is executed specifying the

same Hub Rule Name value.

Figure 4513: The isLightTooLow State object definition

Figure 464: The doDisableBadLightCheck Action object
definition

97

Figure 115 shows the full definition for the

doEnableBadLightCheck EnableHubRule Action object.

When executed the EnableHubRule object will perform

the inverse of the DisableHubRule object, re-enabling the

Rule object chosen in the Hub Rule Name dropdown. It

should be noted that by default all Rule objects are

initially enabled so the EnableHubRule Action object

should only be executed after a previous DisableHubRule

Action object has been executed for the same named

Rule object.

Figure 106 shows the full definition for the

doSendAntPacket SendData Action object. When

executed this object will send the latest raw packet data

from the chosen Sensor Stream to the user specified IP

and port address over a TLS encrypted connection.

When defining a SendData object, the Source Stream

Name dropdown will provide a list of all Sensor Streams

the user has previously defined. For this object the

antTempe Sensor Stream object was selected. The

Destination IP Address identifies the IP address of a

remote packet capture server to forward the packets to

(typically a server running the OmnIoT Packet Capture

Service). The Destination Port identifies what port the

packet capture service has been configured to listen on.

Figure 48: The doSendAntPacket Action object
definition

Figure 47: The doEnableBadLightCheck Action object
definition

98

Figure 117 shows the full definition for the

doSendBlePacket SendData Action object. When

executed this object will send the latest raw packet data

from the chosen Sensor Stream to the user specified IP

and port address over a TLS encrypted connection.

When defining a SendData object, the Source Stream

Name dropdown will provide a list of all Sensor Streams

the user has previously defined. For this object the

bleSensorTag Sensor Stream object was selected. The

Destination IP Address identifies the IP address of a

remote packet capture server to forward the packets to

(typically a server running the OmnIoT Packet Capture

Service). The Destination Port identifies what port the

packet capture service has been configured to listen on.

Figure 118 shows the full definition for the doSendEmail

SendData Action object. When executed the SendEmail

Action object will queue an email to be sent to one or

more recipients. The To Field should contain one or more

recipients. The From Field should be a valid sending ID

for the SMTP account specified in the Email Systems

Options (detailed in the next section). The Subject Field

and Email Body should contain the subject and email

body to be sent respectively. Choosing “Y” in the Add

Signature dropdown will suffix the email body with a

“Time Generated” timestamp as well as the originating

Hub Device ID specified in the Hub System Options.

Note that the SendEmail object can be used to send SMS

messages as well as emails. To do so, substitute the email address with the recipient’s 10-digit phone

number followed by the appropriate SMS gateway domain (e.g. 5554342345@txt.att.net).

Figure 49: The doSendBlePacket Action object
definition

Figure 50: The doSendEmail Action object definition

99

Before creating any SendEmail Action objects, the global

Email System Options must set to enable email actions

and a valid SMTP server and account information must

be provided. Figure 119 shows the fields that need to be

provided. All fields are required. Typically your email

service provider will supply you with the SMTP server id

and port information. Additionally, valid email ID and

password credentials must be provided. Email can only

be sent via TLS secure connections, typically over port

587. Trying to send email over a non-secure connection

will is not supported.

Figure 120 shows the full definition for the

doStartReEnableTimer StartOneShotTimer Action object.

When executed this object will create and start a new

oneshot timer object. Oneshot timer objects will run only

one time and on expiration will no longer exit. For this

example the Timer Duration has been set to 900000

millseconds (or 15 minutes). The Timer Expired Event

dialog box defines an optional TimerExpired object to be

queued each time the timer expires. Here, 15 minutes

after the timer is started an 05-onReEnableTimerExpired

TimerExpired object will be be written to the rule

engine’s event queue.

Figure 52: The doStartReEnableTimer Action object
definition

Figure 51: The Email System Options settings screen

100

Example Summary:

Example 3 has added new objects to extend the functionality originally presented in Example 1 and in

particular illustrates alarm condition processing and the SendEmail Action object. SoftHub rulesets can

be thought of as a series of when/if/do statements (i.e. WHEN some event occurs, IF some conditions are

met, DO some action(s)). The table below provides a summary of how the SoftHub’s rule engine will

process the ruleset described in Example 3:

Event (When) Rule State (If) Action (Do)
00-onNewAntPacket: A new
packet has been received
from the connected Tempe
sensor.

00-doSendAntPacket N/A, Do always doSendAntPacket: Send the most recent
Tempe packet to a remote packet capture
server.

01-onNewBlePacket: A new
packet has been received
from the connected
SensorTag sensor.

00-doSendBlePacket N/A, Do always doSendBlePacket: Send the most recent
SensorTag packet to a remote packet
capture server.

As Above 01-doCheckBadLight Do only if the
State object
isLightTooLow
returns true.

doSendEmail: Send a custom alert email to
one or more recipients.

As Above As Above As Above doStartReEnableTimer: Start a timer to
indicate email alerts should be re-enabled.

As Above As Above As Above doDisableBadLightCheck: Temporarily
disable the Rule object responsible for
checking light below threshold value.

05-onReEnableTimerExpired:
The timer to re-enable low
light threshold checking has
expired.

00-doReEnableLightCheck N/A, Do always doEnableBadLightCheck: Re-enable the
previously disabled Rule object doing the
low light threshold checking.

101

5.4 Logging, Flags, and GPIO’s

Example 4 also uses example 1 as a base but has added functionality to illustrate the use of Data

Logging, Flag objects, and the manipulation of GPIO inputs and outputs. As in the previous example, new

functionality not included in the original Example 1 scenario are highlighted below in italics. Example 4’s

configuration file will do the following:

 On application startup it will implicitly connect to two sensors (via the Auto Start All Sensors

System Option), (1) an ANT Garmin Tempe sensor, and (2) a BLE TI SensorTag sensor.

 Once connected, every packet received from either sensor will be forwarded to a remote packet

capture server.

 Button input will be enabled via an input GPIO pin.

 A button press will toggle the logging of incoming packets to the SoftHub’s internal storage.

 When logging is active, the SoftHub will continue to forward packets to the remote packet

capture server but will also log them internally.

 An LED will be attached to an output GPIO and will be illuminated to indicate to the user when

logging is active.

102

Figure 121 illustrates the object tree view of the ruleset used to implement this scenario. Briefly, the

objects required and the purpose of each are also summarized. The following sections will then describe

each object and its settings in further detail.

Sensor Stream object(s):

 antTempe – Identifies the ANT sensor to connect

to.

 bleSensorTag – Identifies the BLE sensor to

connect to.

State objects:

 isCurrentlyLogging – This FlagValue State object

will be true whenever the SoftHub is actively

logging packet data.

Action objects:

 doInitLoggingFlag – This InitializeFlag Action

object will create and initialize the Flag object

used to keep track of whether logging is either

enabled or disabled.

 doLogAntPacket – This LogData Action object

will log the last received Ant packet from its

selected Sensor Stream object (antTemp) to the

SoftHub’s internal storage.

 doLogBlePacket – This LogData Action object

will log the last received from its selected Sensor

Stream object (bleSensorTag) to the SoftHub’s

internal storage.

 doSendAntPacket – This SendData Action object

will send the most recent packet from its

associated Sensor Stream object (antTemp) to a

user specified remote packet capture server.

 doSendBlePacket – This SendData Action object

will send the most recent packet from its

associated Sensor Stream object (bleSensorTag)

to a user specified remote packet capture server.

 doToggleLed – This ToggleGpioPin Action object

will toggle the voltage being sent to its

associated GPIO output pin (pin 17, connected to an LED).

 doToggleLoggingFlag – This ToggleFlag Action object will toggle the logical value of its

associated Flag object (the “actively logging” flag).

Figure 53: Example 4 configuration object tree

103

 doTurnLedOff – This SetGpioPinLow Action object will set the voltage to its associated GPIO

output pin (pin 17, connected to a LED) to low.

Event objects:

 00-onSoftHubStartup – This AppStarting Event object will be queued before any other events as

the SoftHub initially start up.

 01-onButtonUp – This GpioPinHigh Event object will be queued every time the input button

(GPIO Pin 6) is released after being depressed.

 02-onNewAntPacket – This NewSensorPacket Event object will be queued every time a new

packet is received from its associated Sensor Stream object (antTempe).

 03-onNewBlePacket – This NewSensorPacket Event object will be queued every time a new

packet is received from its associated Sensor Stream object (bleSensorTag).

 99-onSoftHubExit – This AppStopping Event object will be the final event queued when the

SoftHub application has been asked to exit (typically when the SoftHub daemon is stopped).

Rule objects:

 00-doSoftHubInit – This Rule object will be evaluated every time its associated Event object (00-

onSoftHubStartup) is queued.

 00-onButtonPress – This Rule object will be evaluated every time its associated Event object

(01-onButtonUp) is queued.

 00-doSendAntPacket – This Rule object will be evaluated every time its associated Event object

(02-onNewAntPacket) is queued.

 01-checkLogAntPacket – This Rule object will be evaluated every time its associated Event

object (02-onNewAntPacket) is queued.

 00-doSendBlePacket – This Rule object will be evaluated every time its associated Event object

(03-onNewBlePacket) is queued.

 01-checkLogBlePacket – This Rule object will be evaluated every time its associated Event object

(03-onNewBlePacket) is queued.

 01-doSoftHubCleanup – This Rule object will be evaluated every time its associated Event object

(99-onSoftHubExit) is queued.

104

Full Rule object definition(s):

Figure 122 shows the full definition of the

00-doSoftHubInit Rule object. It will be evaluated when

its triggering Event object, 00-onSoftHubStartup, gets

read from the rule engine’s event queue. It has no State

Check logic to evaluate so its Action object(s) will always

be executed. When executed its two Action objects will

(1) turn off the attached LED and, (2) create and initialize

a Flag object that will keep track of when the SoftHub is

actively logging incoming packets (the initial state is

false, not logging).

Figure 123 shows the full definition of the

00-onButtonPress Rule object. It will be evaluated every

time its triggering Event object, 01-onButtonUp, gets

read from the rule engine’s event queue. It has no State

Check logic to evaluate so its Action object(s) will always

be executed. Its two Action objects will (1) toggle the

“actively logging” Flag and, (2) toggle the attached LED’s

illumination state.

Figure 54: The 00-doSoftHubInit Rule object definition

Figure 55: The 00-onButtonPress Rule object definition

105

Figure 124 shows the full definition of the

00-doSendAntPacket Rule object. It will be evaluated

every time its triggering Event object,

02-onNewAntPacket, gets read from the rule engine’s

event queue. It has no State Check logic to evaluate so its

Action object(s) will always be executed. When executed

its single Action object, doSendAntPacket, will send the

most recently received packet from the ANT Tempe

sensor to a user specified remote packet capture server.

Figure 125 shows the full definition of the

01-doCheckLogAntPacket Rule object. This rule will be

evaluated every time its associated Event object,

02-onNewAntPacket, gets read from the rule engine’s

event queue. It has a single stand-alone FlagState State

object, isCurrentlyLogging, controlling its execution.

When evaluated, if its State object returns a value of

true, the action object doLogAntPacket will be executed

and the most recently received Tempe packet will be

logged to the SoftHub’s internal storage.

Figure 126 shows the full definition of the

00-doSendBlePacket Rule object. It will be evaluated

every time its triggering Event object,

03-onNewBlePacket, gets read from the rule engine’s

event queue. It has no State Check logic to evaluate so

the rule’s Action object(s) will always be executed. When

executed its single Action object, doSendBlePacket, will

send the most recently received packet from the BLE

SensorTag sensor to a user specified remote packet

capture server.

Figure 56: The 00-doSendAntPacket object definition

Figure 57: The 00-doCheckLogAntPacket Rule object
definition

Figure 58: The 00-doSendBlePacket object definition

106

Figure 127 shows the full definition of the

01-doCheckLogBlePacket Rule object. This rule will be

evaluated every time its associated Event object,

03-onNewBlePacket, gets queued. It has a single stand-

alone FlagState State object, isCurrentlyLogging,

controlling its execution. When evaluated, if its State

object returns a value of true, the action object

doLogBlePacket will be executed and the most recently

received SersorTag packet will be logged to the SoftHub’s

internal storage.

Figure 128 shows the full definition of the

00-doSoftHubCleanup Rule object. This rule will be

evaluated every time its associated Event object,

99-onSoftHubExit, gets queued. It has a single stand-

alone FlagState State object, isCurrentlyLogging,

controlling its execution. When evaluated, if its State

object returns a value of true, the action object

doTurnLedOff will turn the “actively logging” LED off

before the SoftHub application exits.

Figure 59: The 00-doCheckLogBlePacket Rule object
definition

Figure 60: The 00-doSoftHubCleanup object definition

107

Full Sensor Stream object definition(s):

Figure 129 shows the full definition for the antTempe

ANT Sensor Stream object. From the dropdown of

supported ANT sensors a Sensor Type of “Ant

Environment” was selected (the ANT profile for the

Garmin Tempe). No specific Sensor ID was defined so

that the SoftHub will connect to the first Tempe sensor

available. Lastly, when originally creating the antTempe

object a New Packet Event Event object was specified,

02-OnNewAntPacket. This instructs the SoftHub to queue

the named event every time a new packet is received

from the Tempe sensor that connects to the SoftHub via

this Sensor Stream definition.

Figure 130 shows the full definition for the bleSensorTag

BLE Sensor Stream object. From the dropdown of

supported BLE sensors a Sensor Type of “TI CC2650

SendorTag” was selected. No specific Sensor ID was

defined so that the SoftHub will connect to the first

SensorTag sensor available. Unlike ANT sensors which

will always send all sensor data available, BLE sensors

must generally have supported sensor data values

enabled individually. For this example, only the data

from the Light Intensity sensor has been enabled from

the list of values the sensor supports. Note that this is a

multi-select list-box and one or more values may be

selected as required.

Lastly, when originally creating the bleSensorTag object a

New Packet Event Event object was specified, 03-OnNewBlePacket. This instructs the SoftHub to queue

the named event every time a new packet is received from the SensorTag sensor that connects to the

SoftHub via this Sensor Stream definition.

Figure 62: The bleSensorTag Sensor Stream object
definition

Figure 61: The antTempe Sensor Stream object
definition

108

Full State object definition(s):

Figure 131 shows the full definition for the

isCurrentlyLogging FlagState State object. When

executed this object will test whether the value returned

from the Flag object created via the doInitLoggingFlag

Action object matches the value the user has specified in

the Compare Value dropdown dialog box. In this

example the State object will return true when the

“actively logging” flag is true.

Full Action object definition(s):

Figure 132 shows the full definition for the

doInitLoggingFlag InitializeFlag Action object. When

executed this Action will create a Flag object with the

specified Name and set its initial value as chosen by the

user in the Initial Value dropdown dialog box.

Figure 64: The doInitLoggingFlag Action object
definition

Figure 63: The isCurrentlyLogging State object
definition

109

Figure 133 shows the full definition for the

doLogAntPacket LogData Action object. When executed

this Action will log the most recent packet received from

the Sensor Stream chosen from the Source Stream Name

dropdown dialog box to the user specified file named in

the Data Log Filename text box. In this example the most

recent packet received from the Tempe sensor will be

written to a file named RawSensorData.log (the “.log”

suffix is always added). Users can override the default log

file directory via the Log File Directory text box of the

Hub Systems Options dialog.

Figure 134 shows the full definition for the

doLogBlePacket LogData Action object. When executed

this Action will log the most recent packet received from

the Sensor Stream chosen from the Source Stream Name

dropdown dialog box to the user specified file named in

the Data Log Filename text box. In this example the most

recent packet received from the SensorTag sensor will be

written to a file named RawSensorData.log (the “.log”

suffix is always added). Users can override the log file

directory via the Log File Directory text box of the Hub

Systems Options dialog.

Figure 135 shows the full definition for the

doSendAntPacket SendData Action object. When

executed this object will send the latest packet data from

the chosen Sensor Stream to the user specified IP and

port address over a TLS encrypted connection.

When defining a SendData object, the Source Stream

Name dropdown will provide a list of all Sensor Streams

the user has previously defined. For this object the

antTempe Sensor Stream object was selected. The

Destination IP Address identifies the IP address of a

remote packet capture server to forward the packets to

(typically a server running the OmnIoT Packet Capture

Figure 66: The doLogBlePacket Action object definition

Figure 67: The doSendAntPacket Action object
definition

Figure 65: The doLogAntPacket Action object definition

110

Service). The Destination Port identifies what port the packet capture service has been configured to

listen on.

Figure 136 shows the full definition for the

doSendBlePacket SendData Action object. When

executed this object will send the latest packet data from

the chosen Sensor Stream to the user specified IP and

port address over a TLS encrypted connection.

When defining a SendData object, the Source Stream

Name dropdown will provide a list of all Sensor Streams

the user has previously defined. For this object the

bleSensorTag Sensor Stream object was selected. The

Destination IP Address identifies the IP address of a

remote packet capture server to forward the packets to

(typically a server running the OmnIoT Packet Capture

Service). The Destination Port identifies what port the

packet capture service has been configured to listen on.

Figure 137 shows the full definition for the doToggleLed

ToggleGpioPin Action object. When executed this Action

object will toggle the voltage on the GPIO pin the user

chooses from the GPIO Pin ID dropdown dialog box. This

dialog box will enumerate all pins previously enabled as

output pins in the GPIO System Options dialog (shown

below). For example 4, pin 17 should be connected to a

physical LED.

Figure 69: The doToggleLed Action object definition

Figure 68: The doSendBlePacket Action object
definition

111

Figure 138 shows the Enable GPIO Pin System Options

dialog screen used to enable pin 17 as an output pin. To

enable a new output GPIO pin the user can right click on

the System Options > GPIOs tree node and select New. To

run Example 4, pin 17 should be connected to a physical

LED.

Figure 139 shows the Enable GPIO Pin System Options

dialog screen used to enable pin 17 as an output pin. To

enable a new input GPIO pin the user can right click on

the System Options > GPIOs tree node and select New. To

run Example 4, pin 6 should be connected to a physical

button device. Input GPIO pins may optionally have Pin

High or Pin Low Event objects defined to indicate voltage

transition events. Setting the Pin High Event textbox to

01-onButtonUp will cause a GpioPinHigh Event object to

be queued each time the button is released after being

depressed.

Figure 140 shows the full definition for the

doToggleLoggingFlag ToggleFlag Action object. When

executed this Action will toggle the logical value of the

flag chosen in the Flag Name dropdown dialog box, which

will list all Flag object previously created. In this example

the Flag object created by the doInitLoggingFlag Action

object will be toggled.

Figure 70: The Enable GPIO Pin System Option dialog

Figure 71: The Enable GPIO Pin System Option dialog

Figure 72: The doToggleLoggingFlag Action object
definition

112

Figure 141 shows the full definition for the doTurnLedOff

SetGpioPinLow Action object. When executed this Action

will set the voltage currently being applied to an output

pin to low. All GPIO pins previously enabled as output

pins int the GPIO System Options dialog will be listed in

the GPIO Pin ID dropdown box. In this example, pin 17’s

voltage will be set to low (i.e. LED off).

Figure 73: The doTurnOffLed Action object definition

113

Example Summary:

Example 4 has added new objects to extend the functionality presented in Example 1. Example 4 adds

GPIO input and output pin manipulation, Flag objects, and sensor Data Logging objects. SoftHub rulesets

can be thought of as a series of when/if/do statements (i.e. WHEN some event occurs, IF some

conditions are met, DO some action(s)). The table below provides a summary of how the SoftHub’s rule

engine will process the ruleset described in Example 4:

Event (When) Rule State (If) Action (Do)
00-onSoftHubStartup:
The SoftHub
application has
started.

00-doSoftHubInit N/A, Do always doTurnLedOff: Set the initial LED voltage as low
(LED off).

 As above As above As above doInitLoggingFlag: Create and initialize a Flag
object to indicate if we are currently logging.

01-onButtonUp: An
input button has
been depressed and
released.

00-onButtonPress N/A, Do always doToggleLoggingFlag: Invert the logical value of
the "currently logging" flag.

 As above As above As above doToggleLed: Invert the voltage on the GPIO pin
connected to the "currently logging" LED.

02-onNewAntPacket:
A new packet has
been received from
the connected Tempe
sensor.

00-doSendAntPacket N/A, Do always doSendAntPacket: Send the most recently
received Tempe packet to a remote packet
capture server.

 As above 01-checkLogAntPacket Do only if executing
State object
isCurrentlyLogging
returns true.

doLogAntPacket: Log the most recently received
Tempe packet to the SoftHub's internal storage.

03-onNewBlePacket:
A new packet has
been received from
the connected
SensorTag sensor.

00-doSendBlePacket N/A, Do always doSendBlePacket: Send the most recently
received SensorTag packet to a remote packet
capture server.

 As above 01-checkLogBlePacket Do only if executing
State object
isCurrentlyLogging
returns true.

doLogBlePacket: Log the most recently received
SensorTag packet to the SoftHub's internal
storage.

99-onSoftHubExit:
The SoftHub has
received a shutdown
command and will
exit.

00-doSoftHubCleanup Do only if executing
State object
isCurrentlyLogging
returns true.

doTurnLedOff: Turn off the "currently logging"
LED before exiting the application.

114

5.5 Counters, Averagers, Cache, and Custom Report packets

Example 5 again is again a variation on example 1 and has added functionality to illustrate the use of

Counter objects, Averager objects, Cache objects, and Report objects. Example 5’s configuration file will

do the following:

 On application startup it will implicitly connect to two sensors (via the Auto Start All Sensors

System Option), (1) an ANT Garmin Tempe sensor, and (2) a BLE TI SensorTag sensor.

 It will define a custom User Report packet, in XML format, to include the following data (1) the

latest Lumen value from the BLE SensorTag’s light sensor, (2) the latest Temperature value from

the ANT Tempe sensor, (3) the average temperature from the Tempe sensor over the last 5

minutes, and (4) a cache of the 10 data points we used to compute the Temperature average.

 Data points to create the temperature average will be sampled every 30 seconds.

 User Report packets (as described above) will be sent to a remote packet capture server every 5

minutes.

115

Figure 142 illustrates the object tree view of the ruleset used to implement this scenario. Briefly, the

objects and the purpose of each are also summarized. The following sections will then describe each

object and its settings in further detail.

Sensor Stream object(s):

 antTempe – Identifies the ANT sensor to connect

to.

 bleSensorTag – Identifies the BLE sensor to

connect to.

User Report object(s):

 sensorDataReport – Provides a template for a

user defined custom report packet.

State object(s):

 isTenthSample – This CounterValue State object

is true when the sample counter created by the

doInitSampleCounter Action object has met its

threshold (modulo) and returned to zero.

Action object(s):

 doIncSampleCounter – This IncrementCounter

Action object is used to increment the sample

counter created by the doInitSampleCounter

Action object.

 doInitSampleCounter – This InitializeCounter

Action object creates and initializes a counter

that will return to zero (modulo) on every tenth

sample.

 doInitTempAverager – This InitDataAverager

Action object will create an Averager object that will maintain a 10 sample moving average of

the temperature values received from the antTempe Sensor Stream.

 doInitTempCache – This InitSensorDataCache Action object will create a 10 sample circular

Cache object to hold temperature samples received from the antTempe Sensor Stream.

 doSendReport – When executed, this SendReport Action object will create the custom report

packet described by the sensorDataReport User Report object. Once created it will be

transmitted to the user specified remote packet capture server.

 doStartReportTimer – This StartContinuousTimer Action object will start a timer that will

continuously expire and restart every 30 seconds.

Figure 74: Example 5 configuration object tree

116

 doUpdateTempAverager – This UpdateDataAverager Action object will update the Averager

object created by the doInitTempAverager Action object with the most recent temperature

value received from the antTempe Sensor Stream.

 doUpdateTempCache – This UpdateSensorDataCache Action object will update the Cache

object created by the doInitTempCache Action object with the most recent temperature value

received from the antTempe Sensor Stream.

Event object(s):

 00-onSoftHubStartup – This AppStarting Event object will be queued as the first event to be

processed when the SoftHub application initially starts.

 01-onReportTimerExpired – This TimerExpired Event object will be queued at 30 second

intervals as the Timer object created by the doStartReportTimer Action object expires.

Rule object(s):

 00-doSoftHubInit – This Rule object will be evaluated every time its associated Event object (00-

onSoftHubStartup) is queued.

 00-doDataUpdates – This Rule object will be evaluated every time its associated Event object

(01-onReportTimerExpired) is queued.

 01-doCheckSendReport – This Rule object will be evaluated every time its associated Event

object (01-onReportTimerExpired) is queued. Its execution is conditional based on the

isTenthSample State object.

117

Full Rule object definition(s):

Figure 143 shows the full definition of the

00-doSoftHubInit Rule object. It will be evaluated when

its triggering Event object, 00-onSoftHubStartup, gets

read from the rule engine’s event queue. It has no State

Check logic to evaluate so its Action object(s) will always

be executed. When executed its four Action objects will

(1) create and initialize a Sensor Data Averager object,

(2) create and initialize a Sensor Data Cache object, (3)

create and initialize a Counter object, and (4) create and

start a continuous 30 second Timer object.

Figure 144 shows the full definition of the

00-onDataUpdates Rule object. It will be evaluated every

time its triggering Event object,

01-onReportTimerExpired, gets read from the rule

engine’s event queue. It has no State Check logic to

evaluate so the its Action object(s) will always be

executed. Its three Action objects will (1) update the

Averager object with the latest Tempe Temperature

value, (2) update the Cache object with the latest Tempe

Temperature value, and (3) increment the sample

Counter object’s value by 1.

Figure 76: The 00-onButtonPress Rule object definition

Figure 75: The 00-doSoftHubInit Rule object definition

118

Figure 145 shows the full definition of the

01-onCheckSendReport Rule object. It will be evaluated

every time its triggering Event object,

01-onReportTimerExpired gets read from the rule

engine’s event queue. It has a single standalone State

object to be evaluated. Only when the isTenthSample

State object’s value is true will its Action object be

executed. In this example isTenthSample will be true

every 10th 30 second interval (i.e. every 5 minutes). At

that time the doSendReport SendReport Action object

will create and send the sensorDataReport report packet

to a user specified remote packet capture server.

Full Sensor Stream object definition(s):

Figure 146 shows the full definition for the antTempe

ANT Sensor Stream object. From the dropdown of

supported ANT sensors a Sensor Type of “Ant

Environment” was selected (the ANT profile for the

Garmin Tempe). No specific Sensor ID was defined so

that the SoftHub will connect to the first Tempe sensor

available.

Figure 77: The 01-doCheckSendReport Rule object
definition

Figure 78: The antTempe Sensor Stream object
definition

119

Figure 147 shows the full definition for the bleSensorTag

BLE Sensor Stream object. From the dropdown of

supported BLE sensors a Sensor Type of “TI CC2650

SendorTag” was selected. No specific Sensor ID was

defined so that the SoftHub will connect to the first

SensorTag sensor available. Unlike ANT sensors which

will always send all sensor data available, BLE sensors

must generally have supported sensor data values

enabled individually. For this example, only the data

from the Light Intensity sensor has been enabled from

the list of values the sensor supports. Note that this is a

multi-select list-box and one or more values may be

selected as required.

Full User Report object definition(s):

Figure 148 shows the full definition for the

sensorDataReport UserReport object. User Report

objects act as a template for the creation of custom

tailored data packets. In the Report Items dialog box

users can add and arrainge data components of their

packet. Four data types are currently supported and may

be added by clicking the Add button, (1) Sensor Stream

Data values, (2) Data Averager values, (3) Data Cache

values, and (4) GPIO Pin values. This example will contain

four elements, the most recent SensorTag Lumen value,

the most recent Tempe Temperature value, the average

temperature value from the previously created Averager

object, and the Cache values from the previously created

Cache object. Below are the definition screens used to

create the individual report components.

Figure 79: The bleSensorTag Sensor Stream object
definition

Figure 80: The sensorDataReport Report object
definition

120

Figure 149 shows the full definition for the Sensor

Stream Data value included in the sensorDataReport

Report object. To add a Sensor Stream data value, click

the Add button in the main User Report Specification

screen and select Sensor Stream Data from the

dropdown. All previously defined Sensor Streams will

appear in the Sensor Stream Name dropdown. Choosing

a Sensor Stream will then populate the Sensor Data

Values multi-select dialog box with all values available

from that Sensor Stream. Users may multi-select the

values they wish to add. In this example the Light

Intensity (lumens) data from the SensorTag Sensor

Stream will added to the custom packet.

Figure 150 shows the full definition for the Sensor

Stream Data value added to the sensorDataReport

Report object. To add a Sensor Stream data value, click

the Add button in the main User Report Specification

screen and select Sensor Stream Data from the

dropdown. All previously defined Sensor Streams will

appear in the Sensor Stream Name dropdown. Choosing

a Sensor Stream will then populate the Sensor Data

Values multi-select dialog box with all values available

from that Sensor Stream. Users may multi-select the

values they wish to add. In this example the Current

Temp Celsius data from the antTempe Sensor Stream will

added to the custom packet.

Figure 151 shows the full definition for the Sensor Data

Averager value added to the sensorDataReport Report

object. To add an Averager data value, click the Add

button in the main User Report Specification screen and

select Sensor Data Average from the dropdown. All

previously defined Averager objects will appear in the

Data Average Names multi-select dialog box. Users may

multi-select the Averager object values they wish to add.

In this example the value from the Averager object

created by the doInitTempAverager Action object will

added to the custom packet.

Figure 81: The Sensor Stream Data report element
definition

Figure 82: The Sensor Stream Data report element
definition

Figure 83: The Sensor Data Averager report element
definition

121

Figure 152 shows the full definition for the Sensor Data

Cache values added to the sensorDataReport Report

object. To add one or more Cache data values, click the

Add button in the main User Report Specification screen

and select Sensor Data Cache from the dropdown. All

previously defined Cache objects will appear in the Data

Cache Name dropdown box. Users may select the Cache

object who’s values they wish to add as well as the

number of cached values to report. In this example the

ten most recent values from the Cache object created by

the doInitTempCache Action object will added to the

custom packet.

Full State object definition(s):

Figure 153 shows the full definition for the

isTenthSample CounterValue State object. When

executed this object will test whether the Counter object

created via the doInitSampleCounter Action object is

equal to (EQ) the user specified value in the Compare

Value dialog box. In this example, since the Counter

object has a modulo of 10, the State object will return

true after every tenth sample of the antTemp

Temperature has been taken.

Figure 85: The isTenthSample State object definition

Figure 84: The Sensor Data Cache report element
definition

122

Full Action object definition(s):

Figure 154 shows the full definition for the

doIncSampleCounter IncrementCounter Action object.

When executed this Action will increment the counter

selected by the user in the Counter Name dropdown by

specified value in the Increment Value text box. In this

example the sample counter previously defined by the

doInitSampleCounter Action object will be incremented

by one.

Figure 155 shows the full definition for the

doInitSampleCounter InitializeCounter Action object.

When executed this Action will create and initialize a

Counter object. In this example the new Counter object

will be created and initialized with an Initial Value of 0

and a Counter Modulus of 10.

Figure 86: The doIncSampleCounter Action object
definition

Figure 87: The doInitSampleCounter Action object
definition

123

Figure 156 shows the full definition for the

doInitTempAverager InitDataAverager Action object.

When executed it will create a new Averager object. In

this example the antTempe Sensor Stream has been

selected from the Source Stream Name dropdown. This

causes the Sensor Data Value dropdown to be populated

with all available antTempe Sensor Stream data values.

Current Temp Celsius has been selected as the value to

be averaged. Lastly, a Sample Count of 10 indicates this is

to be a moving average, reflecting the average of the last

10 values added into the Averager object via the

doUpdateTempAverager Action object.

Figure 157 shows the full definition for the
doInitTempCache InitSensorDataCache Action object.
When executed this object will create a new Cache
object. In this example the antTempe Sensor Stream has
been selected from the Source Stream Name dropdown.
This causes the Sensor Data Value dropdown to be
populated with all available antTempe Sensor Stream
data values. Current Temp Celsius has been selected as
the value to be cached. Lastly, setting the Number of
Datapoints to 10 indicates that this is a circular cache
which will hold the last 10 values added.

Figure 158 shows the full definition for the doSendReport

SendReport Action object. When executed this object will

assemble and send the User Report data packet chosen

in the Report Name dropdown to the user specified IP

and port address over a TLS encrypted connection. The

Destination IP Address identifies the IP address of a

remote packet capture server to forward the packets to.

The Destination Port identifies what port the remote

packet capture service has been configured to listen on.

Figure 88: The doInitTempAverager Action object
definition

Figure 89: The doInitTempCache Action object
definition

Figure 90: The doSendReport Action object definition

124

Figure 159 shows the full definition for the

toStartReportTimer StartContinuousTimer Action object.

When executed this object will create and start a new

continuous timer object. Continuous timer objects will

continually restart themselves on expiration. For this

example the Timer Duration has been set to 30000

millseconds (30 seconds). The Timer Expired Event dialog

box defines an optional TimerExpired object to be

queued each time the timer expires. Here, every 30

seconds an 01-onReportTimerExpires TimerExpired object

will be put to the rule engine’s event queue.

Figure 160 shows the full definition for the

doUpdateTempAverager UpdateDataAverager Action

object. When executed this Action object will average in

the latest data value as specified in the Averager object

chosen in the Data Averger Name dropdown. In this

example, the Averager object created by the

doInitTempAverager Action object will be updated with

the latest Current Temperature value from the antTempe

Sensor Stream.

Figure 161 shows the full definition for the

doUpdateTempCache UpdateSensorDataCache Action

object. When executed this Action object will cache the

latest data value as specified in the Cache object chosen

in the Data Cache Name dropdown. In this example, the

Cache object created by the doInitTempCache Action

object will be updated with the latest Current

Temperature value from the antTempe Sensor Stream.

Figure 91: The doStartReportTimer Action object
definition

Figure 92: The doUpdateTempAverager Action object
definition

Figure 93: The doUpdateTempCache Action object
definition

125

Example Summary:

Example 5 has added new objects to extend the functionality presented in Example 1 including Counter

objects, Averager objects, Cache objects, and User Report objects. SoftHub rulesets can be thought of as

a series of when/if/do statements (i.e. WHEN some event occurs, IF some conditions are met, DO some

action(s)). The table below provides a summary of how the SoftHub’s rule engine will process the ruleset

described in Example 5:

Event (When) Rule State (If) Action (Do)
00-onSoftHubStartup: The
SoftHub application has
started.

00-doSoftHubInit N/A Do Always doInitTempAverager: Create a 10 value
moving average Averager object for the
Tempe sensor's Current Temperature value.

 As Above As Above As Above doInitTempCache: Create a 10 item Cache
object for the Tempe sensor's Current
Temperature value.

 As Above As Above As Above doInitSampleCounter: Create a cached
samples Counter object with a modulo of 10.

 As Above As Above As Above doStartReportTimer: Create and start a
continuous Timer object that will expire
every 30 seconds.

01-onReportTimerExpired:
The 30 second continuous
timer has expired.

00-onDataUpdates N/A Do Always doUpdateTempAverager: Update the
Averager object with the last received
Current Temperature data point.

 As Above As Above As Above doUpdateTempCache: Update the Cache
object with the last received Current
Temperature data point.

 As Above As Above As Above doIncSampleCounter: Increment the number
of samples in the current report cycle.

 As Above 00-doCheckSendReport Do only if executing
State object
isTenthSample
returns true.

doSendReport: Create and send a custom
tailored User Report packet to the remote
packet capture server.

126

Below is an sample packet generated by Example 5. Note the four sections under the Packet Payload

field, two SensorDataValues sections (bleSensorTag/antTempe), followed by a SensorAveragedData

section, and lastly the SensorCachedData section which lists each of the individual antTempe

temperature values used to create the average.

Continued on the following page…

<?xml version="1.0" encoding="UTF-8"?>
<OmnIotHubPacket>
 <OriginDeviceId>555</OriginDeviceId>
 <PacketGeneratedTimestamp>06/16/2018 11:36:48 932:693 UTC</PacketGeneratedTimestamp>
 <PacketReceivedTimestamp>06/16/2018 11:36:49 147:383 UTC</PacketReceivedTimestamp>
 <SequenceNumber>1</SequenceNumber>
 <PacketType>XML Report</PacketType>
 <PacketContents>
 <OmnIotRptPacket>
 <ReportID>SensorData</ReportID>
 <SequenceNum>1</SequenceNum>
 <TimeStamp>06/16/2018 04:36:48</TimeStamp>
 <PacketPayload>
 <SensorDataValues>
 <SensorName>bleSensorTag</SensorName>
 <SensorDataField>
 <FieldName>TI OPT3001 Light Intensity</FieldName>
 <TimeStamp>06/16/2018 04:36:48</TimeStamp>
 <FieldValue>2.75</FieldValue>
 </SensorDataField>
 </SensorDataValues>
 <SensorDataValues>
 <SensorName>antTempe</SensorName>
 <SensorDataField>
 <FieldName>Current Temp Celsius</FieldName>
 <TimeStamp>06/16/2018 04:36:46</TimeStamp>
 <FieldValue>29.2999992371</FieldValue>
 </SensorDataField>
 </SensorDataValues>
 <SensorAveragedData>
 <SensorName>antTempe</SensorName>
 <FieldName>Current Temp Celsius</FieldName>
 <AveragedValue>29.9559997559</AveragedValue>
 </SensorAveragedData>

127

 <SensorCachedData>
 <SensorName>antTempe</SensorName>
 <FieldName>Current Temp Celsius</FieldName>
 <CachedDataValues>
 <DataPair>
 <TimeStamp>06/16/2018 04:36:46</TimeStamp>
 <DataValue>29.2999992371</DataValue>
 </DataPair>
 <DataPair>
 <TimeStamp>06/16/2018 04:36:18</TimeStamp>
 <DataValue>29.2999992371</DataValue>
 </DataPair>
 <DataPair>
 <TimeStamp>06/16/2018 04:35:46</TimeStamp>
 <DataValue>29.7600002289</DataValue>
 </DataPair>
 <DataPair>
 <TimeStamp>06/16/2018 04:35:18</TimeStamp>
 <DataValue>29.7600002289</DataValue>
 </DataPair>
 <DataPair>
 <TimeStamp>06/16/2018 04:34:48</TimeStamp>
 <DataValue>29.7600002289</DataValue>
 </DataPair>
 <DataPair>
 <TimeStamp>06/16/2018 04:34:16</TimeStamp>
 <DataValue>29.7600002289</DataValue>
 </DataPair>
 <DataPair>
 <TimeStamp>06/16/2018 04:33:48</TimeStamp>
 <DataValue>30.8199996948</DataValue>
 </DataPair>
 <DataPair>
 <TimeStamp>06/16/2018 04:33:16</TimeStamp>
 <DataValue>30.8199996948</DataValue>
 </DataPair>
 <DataPair>
 <TimeStamp>06/16/2018 04:32:48</TimeStamp>
 <DataValue>30.1399993896</DataValue>
 </DataPair>
 <DataPair>
 <TimeStamp>06/16/2018 04:32:16</TimeStamp>
 <DataValue>30.1399993896</DataValue>
 </DataPair>
 </CachedDataValues>
 </SensorCachedData>
 </PacketPayload>
 </OmnIotRptPacket>
 </PacketContents>
</OmnIotHubPacket>

128

Addendum A: MQTT Extended Options Files (.mcfg)

A.01 Introduction

The MQTT Standard describes a set of parameters that users may provide to dictate how connections

between clients and MQTT brokers behave. The SoftHub MQTT implementation is built on top of the

paho library, and as such all standard parameters are exposed for user control. Due to the number of

options available, they are exposed in the SoftHub as sets of “basic” and “extended” options. Basic

options can be set directly in the SoftHub Configuration Utility when defining a new PublishData or

PublishReport Action object as part of a rule set. Both the PublishData and the PublishReport object

definition screens provide a field for the user to optionally specify an “Extended Options File”. These

files allow users to set the extended options for an MQTT connection not exposed in the SoftHub

Configuration Utility directly.

During installation, template MQTT Extended Options files are copied to the configuration file directory

where the RuleEngine.xml file resides for a specific platform. User modified Extended Options files

should also be kept only in this directory. To create a new file, copy the template file to the filename you

specified in the SoftHub Configuration Utility (note however that in the Configuration Utility you don’t

specify the .mcfg suffix). To enable a parameter you wish to set, remove the leading pound sign

(comment indicator). Note also that if a parameter is set both in the SoftHub Configuration Utility and in

the Extended Options file, the former will take precedence and the latter will be ignored. Be sure to read

the comments in the template file to ensure you specify your options in the proper format. Enabled

Extended Options file parameters must be properly formatted or all settings will be ignored.

The following sections detail the parameters available in each subsection of an Extended Options file.

Note that these are only very high level descriptions. For specific behaviors of individual parameters

please reference the MQTT standard. All parameters not denoted with an asterisk come directly from

the standard (whereas asterisk’ed parameters are SoftHub specific).

129

A.02 General Connection Settings

The first subsection in an Extended Options file include the general connection settings. Note that, as

detailed above, if values in this section conflict with those set in the RuleEngine.xml file, they will be

ignored and the value set in the RuleEngine.xml file will take precedence. The table below details the

connection parameters that can be enabled and set in this subsection –

ConnectionUsername The User Id to be passed when connecting to the remote MQTT broker

ConnectionPassword The User Password to be passed when connecting to the remote MQTT
broker

ConnectionClientId The Client Id to be passed when connecting to the remote MQTT broker

ConnectionAddress The remote address to be used when connecting to the MQTT broker

DeviceControlTopic A topic to subscribe to to receive User Defined Event trigger directives

ConnectionKeepAlive The MQTT heartbeat keep alive interval in seconds

ConnectTimeout The number of seconds to wait for a connect/publish/disconnect
operation before considering it as having timed out.

MqttVersion The MQTT API version to use when communicating with the remote
server

FlattenJson(*) Setting this value to "1" will enable JSON flattening. Some MQTT brokers
may disallow label/value pairs being nested beyond the 1st level.

A.03 Last Will Connection Settings

Any desired Last Will and Testament settings desired can be set in this subsection. See the MQTT

standards documentation for details on how these parameters may interact -

LastWillTopic Topic for publishing "last will" message

LastWillMsg "Last will" message to be published on unexpected connection drop

LastWillRetained Flag (0=false/1=true) indicating whether the last will message should be
retained on the broker

130

A.04 SSL/TLS Connection Settings

This subsection allows users to control advanced settings relating to SSL/TLS encrypted connections.

Your target MQTT broker may require the use of specific settings to ensure proper security. Also see the

MQTT standards documentation for details on how these parameters may interact -

SslTrustedStore The PEM format file containing the public digital certs trusted by the
client

SslTrustedKey The PEM format file containing the public cert chain of the client

SslPrivateKey If not included in the SslTrustedKey store, points to the PEM format file
containing the client's private key

SslPrivateKeyPwd The password to load the client's privateKey if encrypted

SslCypherSuites List of ciphers the client will present to the server during SSL handshake

SslEnableCertAuth Flag (0=false/1=true) to enable verification of the server certificate

SslVersion The SSL/TLS version to use

SslPostVerify Flag to carry out post-connect checks, including that a certificate
matches the given host name

A.05 JSON Filter-Format Files

JSON Filter/Format Files are used to reformat flattened JSON packet data on the fly. Each file will create

a single filter/format object and each object will be applied to each new packet in the order specified. As

soon as a match is found, that Filter/Format transformation will be applied and no further processing

will be performed. JSON Filter/Format files are covered in detail in the following section.

PublishUnformatted(*) Determines whether packets that are unfiltered by any of the active
filters are published or discarded

JffFile01(*) The name of the first JSON Format/Filter file to be applied to new
outgoing packets

.

.

JffFile16(*) The name of the last JSON Format/Filter file to be applied to new
outgoing packets

131

A.06 External Control Via User Defined Events

When defining a new PublishData or PublishReport Action object, you have the option of specifying a

topic for the SoftHub to listen to for incoming control messages. These messages can be used to queue

any User Defined Events defined in the active configuration ruleset.

The SoftHub allows for two methods of mapping incoming MQTT control data messages to User Defined

Events. The first is to simply prefix the name of the User Event you want to queue with a "UEV_" tag and

include that string in the message sent from the MQTT broker. If the string is found anywhere in the

incoming text it will be mapped accordingly. For MQTT brokers that do not allow you to modify the

outgoing control data, the method below allows you to map any string, or string fragment, in the MQTT

control message to a User Defined Event.

This subsection allows users to specify "Input to User Event" mappings. Each of the 16 available slots

allows you to map input from any subscribed topic to your own internal User Defined Events. Each entry

should follow the format of a quoted string that acts as a search string, followed immediately by a

comma, followed immediately by a quoted string matching the name of a User Defined Event you wish

to queue and have created in the active RuleEngine.xml file. Note that search strings allow for minimal

wildcarding - you may prefix your string with an asterisk indicating your pattern must match the end of a

string, you may suffix your string with an asterisk indicating your pattern must match the beginning of a

string, or you may prefix and suffix your string with an asterisk indicating your pattern can match any

substring in a string. See the .jff template file for examples of how to properly format these fields.

As will JSON Filter/Format objects, the SoftHub will process each mapping in order until a match is found

at which time the transformation will be made and no further processing will occur.

InputToUEV01(*) The first pattern/replacement pair to be applied to incoming control
messages.

.

.

InputToUEV16(*) The last pattern/replacement pair to be applied to incoming control
messages.

132

Addendum B: JSON Filter-Format Files (.jff)

B.01 Introduction

Like the objects you define in the SoftHub Configuration Utility, JSON Filter/Format files map directly to

objects that actually perform a specific function. In this case, the objects filter outgoing JSON packets to

identify target packets to be re-formatted to meet the requirements of some target MQTT broker. By

default, the SoftHub will provide all information in a binary packet fully decoded into a JSON packet.

Since this format will not be suitable as input to many third party MQTT brokers, JFF objects allow you to

selectively pull the data from your packets and insert the selected data in any packet format you define.

Using this method, the SoftHub should able to send data directly to most, if not all, third party MQTT

brokers.

Each JFF file can perform one type of transformation and you may specify up to sixteen JFF files per

MQTT connection. There are three types of parameters to be defined in a JFF file. They are described in

detail in the following sections, but in general they are (1) filter parameters that allow you to selectively

target specific packets for transformation, (2) target value labels which identify the labels associated

with the values you want to insert into your transformed packet, and (3) an output format specifier

which acts as a template for the packet you wish to actually publish.

Note that to use JFF files your packets must be in flattened JSON format. That is to say that JSON must

be the format you selected in the PublishData or UserReport object definition screen, and that the

"FlattenJson" option must be set to "1" in the associated .mcfg file.

B.02 Pattern Match Specifiers

On a given MQTT connection you may have multiple packet formats being published at any given time.

You may have multiple sensors connected and each sensor may produce one or more packet formats.

Additionally, you may define one or more custom report packets to publish control or aggregated data

from multiple sensors as well. The "Pattern Match Specifiers" subsection of a JFF file is where you can

single out specific label/value pairs to ensure that the packet you attempt to transform is the type of

packet you are targeting. While Pattern Match Specifiers are optional, you can specify up to eight per

JFF file. Each specifier consists of a label/value pair that must all be matched for the packet to be further

processed. See the template JFF file for the exact format of Pattern Match Specifiers and for examples of

how these strings should be defined.

B.03 Data Label Specifiers

Assuming all the Pattern Match Specifiers are matched, the second subsection of a JFF file is where you

define the labels of the data fields you wish to transfer to your reformatted output packet. The

133

important thing to understand is that the labels are coupled to the Output Format Specifier (detailed in

the next section). Each Data Label Specifier will indicate one data value to be inserted into the output

packet and you can specify up to sixteen labels per JFF file. It should be noted that, like Pattern Match

Specifiers, if all labels are not found no transformation will be applied and processing will move to the

next JFF file (if additional JFF files are defined).

Data Label Specifiers also may serve a secondary function wherein the data value itself may be

reformatted as well. See the JFF template comments for details but current data transformations are as

follows -

 "1" - Transform an ISO 8601 date string to a UNIX epoch date string value with a 1 sec resolution
 "2" - Transform an ISO 8601 date string to a UNIX epoch date string value with a 1 msec resolution

B.04 Output Format Specifier

Each JFF File must have exactly one Output Format Specifier defined. The Output Format Specifier acts

as the template for the reformatted output packet. The process is very straight-forward, wherein data

values associated with the labels defined via the Data Label Specifiers are substituted directly in the

Output Format Specifier where ever a "%s" value placeholders occur. See the JFF template file for

examples but the important things to understand are that -

(1) the values will be replaced from left to right by the lowest to the highest numbered Data Label

Specifier

(2) the number of "%s" value place holders must exactly match the number of Data Label Specifiers

(3) there may be no gaps in the Data Label Specifiers, all must be consecutive.

134

Addendum C: SoftHub Object Tables

C.01 Sensor Stream Object(s) Table

The table below provides a synopsis of all currently supported Sensor Stream object(s) –

Object Name Description

AntSensorStream Used to define an ANT sensor to be connected to the SoftHub.

BleSensorStream Used to define a BLE sensor to be connected to the SoftHub.

C.02 User Report Object(s) Table

The table below provides a synopsis of all currently supported User Report object(s) –

Object Name Description

UserReport Used to create a customized report packet template, in either binary, JSON, or XML
format, aggregating and consolidating data from multiple sources.

C.03 Event Object(s) Table

The table below provides a synopsis of all currently supported Event object(s) –

Object Name Description

AppStarting Always queued by the SoftHub as the first event to be processed.

AppStopping Queued either internally or externally to initiate all final processing and exit from
the SoftHub Application.

UserDefinedEvent User Defined Events are defined by the user and can only be queued in response to
incoming MQTT control messages.

SensorConnect Sensor Stream object specific, queued when the associated sensor has successfully
connected to the SoftHub.

SensorDisconnect Sensor Stream object specific, queued when the associated sensor has
disconnected (either expectedly or unexpectedly) from the SoftHub.

NewSensorPacket Sensor Stream object specific, queued every time a new packet has been received
from the associated sensor.

GpioPinLow GPIO pin specific, queued when an associated GPIO input pin has transitioned from
a high to a low state.

GpioPinHigh GPIO pin specific, queued when an associated GPIO input pin has transitioned from
a low to a high state.

TimerExpired Timer object specific, queued when the associated timer has elapsed.

135

C.04 Action Object(s) Table

The table below provides a synopsis of all currently supported Action object(s) –

Object Name Description

EnableSensorStream Sensor Stream object specific, directs the SoftHub to attempt to connect to
the associated sensor.

DisableSensorStream Sensor Stream object specific, directs the SoftHub to initiate a disconnect
from the associated sensor.

EnableBleNotifications Enable a Ble sensor characteristic to begin notifications.

DisableBleNotifications Disable a Ble sensor characteristic from continuing notifications.

InitiateBleRead Initiate an asynchronous read from a Ble sensor characteristic.

InitiateBleWrite Initiate an asynchronous write to a Ble sensor characteristic.

InitDataAverager Creates and initializes an "averager object" for a specific sensor value. May
be a moving or running average. These objects may be included in
UserReport Report objects, or may be used as threshold values in
SensorDataAveragerValue State objects to conditionally control the
execution of Rule objects.

UpdateDataAverager Adds a new data point to an averager object previously created via a
InitDataAverager Action object.

InitSensorDataCache Creates and initializes a circular "sensor data cache object" for a specific
sensor value. These objects may be included in UserReport Report objects,
or may be used as threshold values in NumCachedSamplesValue State
objects. NumCachedSamplesValue State objects may be used to
conditionally control the execution of Rule Objects.

UpdateSensorDataCache Adds a new data point to sensor data cache object previously created via a
InitSensorDataCache Action object.

SendData Sensor Stream object specific, forwards the most recently received packet
from the associated sensor to a remote packet capture server.

SendReport Causes the associated UserReport object packet to be assembled and
forwarded to a remote packet capture server.

PublishData Sensor Stream object specific, publishes the most recently received packet
from the associated sensor to a user specified remote MQTT broker.

PublishReport Causes the associated UserReport object packet to be assembled and
published to a user specified remote MQTT broker.

LogData Sensor Stream object specific, logs the most recently received packet from
the associated sensor to the SoftHub device's internal storage.

LogReport Causes the associated UserReport object to be assembled and logged to the
SoftHub device's internal storage.

SendEmail Will cause the SoftHub to attempt to send an email or SMS message to one
or more specified recipients.

StartOneShotTimer Will cause the creation/start of a "one-shot" (non-repeating) timer object
expiring at some relative time in the future (e.g. 100 milliseconds). On
expiration, an associated TimerExpired Event object will be put to the rule
engine’s event queue.

StartContinuousTimer Will cause the creation/start of a "continuous" (repeating) timer object
expiring at some relative time in the future. On expiration, an associated
TimerExpired Event object will be put to the rule engine’s event queue.

136

StartOneShotTodTimer Will cause the creation/start of a one-shot "time of day" timer object
expiring at some absolute time in the future (e.g. 4:30 PM). On expiration,
an associated TimerExpired Event object will be put to the rule engine’s
event queue.

StartContinuousTodTimer Will cause the creation/start of a continuous "time of day" timer object
expiring at some absolute time in the future. On expiration, an associated
TimerExpired Event object will be put to the rule engine’s event queue.

StopTimer Timer specific, will cancel a previously created/started timer object (i.e. no
TimerExpired Event object will be queued).

InitializeFlag Will cause the creation/initialization of a Boolean Flag object. Flag objects
may be referenced by FlagState State objects to conditionally control the
execution of Rule objects.

SetFlag Sets a Flag object created by an InitializeFlag Action object to "true".

ClearFlag Sets a Flag object created by an InitializeFlag Action object to "false".

ToggleFlag Toggles the value of a flag object created by an InitializeFlag Action object.

InitializeCounter Will cause the creation/initialization of a Counter object. Counter objects
may be referenced by CounterValue State objects to conditionally control
the execution of Rule objects.

IncrementCounter Will increment a counter created by the InitCounter Action object by a user
defined value.

DecrementCounter Will decrement a counter created by the InitCounter Action object by a user
defined value.

SetGpioPinLow Will set an output GPIO pin that has been enabled in the SoftHub's GPIOs
System Options to "low".

SetGpioPinHigh Will set an output GPIO pin that has been enabled in the SoftHub's GPIOs
System Options to "high".

ToggleGpioPin Will toggle an output GPIO pin that has been enabled in the SoftHub's
GPIOs System Options to its inverted state.

EnableHubAction Will reenable execution of a specific Action object that has been previously
disabled.

EnableHubEvent Will reenable the processing of a specific Event object that has been
previously disabled.

EnableHubRule Will reenable the evaluation of a specific Rule object that has been
previously disabled.

DisableHubAction Will disable execution of a specific Action object by any rule that references
it.

DisableHubEvent Will disable the processing of a specific Event object by the SoftHub rule
engine causing all associated Rule objects to not be evaluated.

DisableHubRule Will disable the evaluation of a specific Rule object by the SoftHub rule
engine when its associated Event object is received.

ToggleHubAction Will toggle the enabled/disabled flag of a specific Action object.

ToggleHubEvent Will toggle the enabled/disabled flag of a specific Event object.

ToggleHubRule Will toggle the enabled/disabled flag of a specific Rule object.

ExecSysCommand Executes a system command as a background task.

SoftHubStop Will cause an AppStopping Event object to be written to the rule engine
event queue, which in turn will cause the SoftHub Application to initiate its
own shutdown and exit.

137

C.05 State Object(s) Table

The table below provides a synopsis of all currently supported State object(s) –

Object Name Description

SensorConnected Sensor Stream object specific, when executed this object will be true if the
associated sensor is currently connected to the SoftHub.

SensorDataValue When executed this object will test a specific sensor data value against a user
defined threshold value.

SensorDataAveragerValue When executed this object will test a specific InitDataAverager Action object’s
current value against a user defined threshold value.

NumCachedSamplesValue When executed this object will test a specific InitSensorDataCache Action object’s
cached sample count against a user defined threshold value.

FlagState When executed this object will test a specific Flag object value against a user
defined compare value.

CounterValue When executed this object will test a specific Counter object value against a user
defined threshold value.

GpioPinState When executed this object will test a current input GPIO state against a user
defined compare value.

TimeOfTheDay When executed this object will test the current time of day against a user defined
time of day value.

DayOfTheWeek When executed this object will test the current day of the week against a user
defined day of the week value.

DayOfTheMonth When executed this object will test the current day of the month against a user
defined day of the month value.

CurrentMonth When executed this object will test the current month against a user defined
month value.

CurrentYear When executed this object will test the current year against a user defined year
value.

C.06 User Rule Object(s) Table

The table below provides a synopsis of all currently supported User Rule object(s) –

Object Name Description

UserRule This object will specify a single Event object that will trigger its evaluation, an
optional series of one or more State objects connected by Boolean operators to
control its execution, and one or more Action objects to be executed provided
the conditional logic has been met (or has been omitted).

